WTF Fun Fact 13563 – Boosting Math Learning

A study from the Universities of Surrey and Oxford, Loughborough University, and Radboud University in The Netherlands suggests that electrical noise stimulation might be a tool to enhance math learning, especially for those who typically struggle with the subject.

What’s Neurostimulation?

Neurostimulation, a non-invasive technique that involves exciting specific brain regions, has the potential to enhance learning. However, we’ve long been limited in our understanding of the physiological transformations it induces in the brain – and the extent of subsequent learning outcomes.

The researchers aimed to fill this knowledge gap by investigating how electrical noise stimulation, when applied to the frontal part of the brain, might affect mathematical learning.

We’re not sure if that sounds better or worse than just studying harder. (Though this method typically involves applying a small electrical current to the scalp to influence the brain’s neuronal activity, and it doesn’t hurt.)

The Study

The study enlisted 102 participants. Their mathematical prowess was evaluated using a set of multiplication problems. Subsequently, the researchers divided them into four groups:

  1. A learning group exposed to high-frequency random electrical noise stimulation.
  2. An overlearning group that practiced multiplication problems, even beyond mastery, with the same high-frequency stimulation.
  3. Two placebo groups: both a learning and an overlearning group, where participants experienced similar conditions to real stimulation but without significant electrical currents.

Electroencephalogram (EEG) recordings were essential in this study as they provided a window into the brain’s activity both before and after the stimulation.

Stimulating the Brain for Math Learning

The study discovered a fascinating link between brain excitation levels and the impact of electrical noise stimulation.

Specifically, individuals who exhibited lower brain excitation when initially assessed on mathematical problems seemed to benefit from the stimulation by demonstrating improved mathematical abilities.

On the contrary, those with naturally higher brain excitability and those in placebo groups did not show notable improvements after the experiment.

Not everyone’s brain responds in the same way to external stimuli. The research indicated that individuals whose brains were less excited by mathematics before the stimulation showed improvement in mathematical abilities after the electrical noise stimulation. Those with already high levels of excitation did not show the same benefits.

This differential response suggests that the stimulation may have a sort of “ceiling effect” where it’s only effective up to a certain level of natural brain excitability.

The Implications of the Experiment

It may be the case that those with inherently lower brain excitability might be prime candidates for such stimulation, potentially experiencing a jump in learning outcomes. However, individuals with high brain excitability might not find the same benefit.

Professor Roi Cohen Kadosh reflected on the broader significance of the findings. He highlighted the profound nature of learning in human life, from mundane daily tasks like driving to intricate skills like coding. This research, according to him, gives a deeper understanding of the mechanisms and conditions under which neurostimulation could be effective.

The Future of Learning Math

The findings from this study hold the promise of reshaping approaches to learning. By understanding when and how to apply neurostimulation, tailored learning strategies could be developed.

Of course, everyone will form their own opinion about whether tinkering with the brain is worth the outcome.

While this study offers exciting insights, it’s part of an ongoing scientific conversation to see if the results are repeatable.

 WTF fun facts

Source: “Electrical noise stimulation applied to the brain could be key to boosting math learning” — ScienceDaily


Share this fact:  


Leave a Comment