WTF Fun Fact 13610 – Creating Plant Biosensors

Scientists at the University of California – Riverside have engineered plant biosensors that change color in the presence of specific chemicals.

Someday, the greenery decorating our homes and gardens might soon be ornamental and an environmental watchdog. (Of course, plants are already good indicators of their surroundings since they tend to wilt or die when things get toxic.)

Innovative Plant Biosensors

It all started with a question: What if a simple house plant could alert you about contaminants in your water? Delving deep into this concept, the UC Riverside team made it a reality. In the presence of a banned, toxic pesticide known as azinphos-ethyl, the engineered plant astonishingly turns a shade of beet red. This development offers a visually compelling way to indicate the presence of harmful substances around us.

Ian Wheeldon, an associate professor of chemical and environmental engineering at UCR, emphasized the groundbreaking nature of this achievement. “In our approach, we ensured the plant’s natural metabolism remains unaffected,” he explained. “Unlike earlier attempts where the biosensor component would hinder the plant’s growth or water absorption during stress, our method doesn’t disrupt these essential processes.”

The team’s findings, elaborated in a paper published in Nature Chemical Biology, unveiled the secret behind this transformative process. At the heart of the operation lies a protein known as abscisic acid (ABA). Under stressful conditions like droughts, plants produce ABA, signaling them to conserve water and prevent wilting. The research team unlocked the potential of ABA receptors, training them to latch onto other chemicals besides ABA. When these receptors bind to specific contaminants, the plant undergoes a color change.

From Plant to Yeast: Expanding the Biosensor Spectrum

The UC Riverside team didn’t just stop at plants. They expanded their research horizon to include yeast, turning this organism into a chemical sensor. Remarkably, yeast exhibited the capability to respond to two distinct chemicals simultaneously, a feat yet to be achieved in plants.

Sean Cutler, UCR professor of plant cell biology, highlighted the team’s vision. “Imagine a plant that can detect up to 100 banned pesticides,” he said. “The potential applications, especially in environmental health and defense, are immense. However, there’s a long way to go before we can unlock such extensive sensing capabilities.”

The Path Forward for Plant Biosensors

While the initial results are promising, commercial growth of these engineered plants isn’t on the immediate horizon. Stringent regulatory approvals, which could span years, are a significant hurdle. Moreover, as a nascent technology, there are numerous challenges to overcome before it finds a place in real-world applications, like farming.

Yet, the future looks bright. “The potential extends beyond just pesticides,” Cutler added. “We aim to detect any environmental chemical, including common drugs that sometimes seep into our water supplies. The technology to sense these contaminants is now within reach.”

 WTF fun facts

Source:


Share this fact:  


Leave a Comment