WTF Fun Fact 13544 – What Darwin Ate

You might assume that Charles Darwin, the famed naturalist, was a vegetarian since he was so enamored with living creatures, but he was just the opposite – in fact, Darwin ate some of his discoveries.

During his journey on The Beagle, he indulged in an array of exotic meats – from puma, which he found “remarkably like veal in taste,” to armadillos and iguanas.

His curiosity even led him to taste the bladder contents of a giant tortoise. Darwin’s palate wasn’t just adventurous; it was scientific. He was known for eating specimens he was studying and trying to describe scientifically.

Modern Biologists Follow Suit

This gastronomic curiosity didn’t end with Darwin. Many modern scientists continue to eat their study subjects, either out of convenience (as with those researching edible plants and animals like trout or blueberries) or driven by sheer curiosity. From bluegill and sea urchin to more peculiar choices like beetles and cicadas, the range of their dietary experiments is vast.

Notably, Richard Wassersug, while conducting a study on the palatability of tadpoles in the 1970s, had graduate students (bribed with beer) taste but not swallow various tadpole species. This experiment, now impossible to conduct due to ethical restrictions, showed that easy-to-catch tadpoles often tasted worse. Wassersug himself described the taste of toad tadpoles as “astonishingly bitter.”

The Drive Behind Why Darwin Ate an Unusual Diet

The motivation behind these gastronomic explorations varies. Sometimes it’s an academic pursuit, as in Wassersug’s study. Other times, it’s a quest to manage invasive species, turning them from pests into menu items. Sarah Treanor Bois, during her Ph.D. research on invasive plants, attended a cook-off featuring dishes made from invasive species like nutria and bullfrog legs. Eating invasives is not just about satiating curiosity but also about drawing attention to ecological problems.

However, the most common reason cited for these unusual diets is pure scientific curiosity. Robert Thorson, a geologist, once tasted 30,000-year-old meat from a giant steppe bison found in permafrost. His verdict? It was stringy and flavorless, with a “pungent rankness.”

Scientists’ Gastronomic Adventures

Why are scientists so inclined towards tasting their research subjects? Mark Siddall, a leech expert, believes it’s about familiarity. Just as an omnivore eats chicken, beef, or pork, scientists consume what they’re familiar with. To a biologist, an organism they’ve studied extensively may not seem so different from regular food. Richard Wassersug views it as a part of being a naturalist. To fully understand and connect with nature, one must engage all senses, including taste.

It’s not just about curiosity but also about a sense of community and perhaps a bit of competitiveness among scientists. The stories of Darwin and others set a precedent, and many modern scientists feel compelled to follow in their footsteps, driven by peer or ‘beer’ pressure.

 WTF fun facts

Source: “Dining Like Darwin: When Scientists Swallow Their Subjects” — NPR

WTF Fun Fact 13542 – The Rooster’s Soundproofing

Roosters are known for their loud crowing, but what contributes to a rooster’s soundproofing so it doesn’t go deaf from its own noise?

Researchers from the University of Antwerp and the University of Ghent dove into this mystery, revealing some surprising adaptations that protect these birds from self-induced hearing loss.

Crowing Loudness: More Than Just a Wake-Up Call

The research team embarked on a mission to determine the actual loudness of a rooster’s crow. They equipped sample roosters with tiny microphones near their ears to measure the intensity of the sound. Astonishingly, they discovered that the crowing averages over 100 decibels.

To put this in perspective, that’s comparable to the noise produced by a running chainsaw.

Continuous exposure to such noise levels typically leads to deafness in humans, caused by irreversible damage to the tiny hair cells in the inner ear. Since chickens, including roosters, possess similar hair cells, the team was curious about why these birds don’t suffer hearing damage.

A Built-In Ear-Plug Mechanism for the Rooster’s Soundproofing

The key to this avian riddle lies in the rooster’s unique anatomical structure. Through micro-computerized tomography scans of the birds’ skulls, the researchers uncovered two crucial adaptations.

First, they found that a portion of the rooster’s eardrum is covered by soft tissue, significantly dampening incoming noise. More impressively, when a rooster throws its head back to crow, another piece of material acts as a natural ear-plug, covering the ear canal completely.

This ingenious mechanism functions much like a person blocking their ears to muffle sound, providing the rooster with a form of self-protection against its own deafening calls.

Another intriguing aspect of avian biology plays a role here. Unlike humans, birds possess the ability to regenerate damaged hair cells in their ears. This regenerative capability provides an additional layer of defense against potential hearing damage.

But what about the hens and chicks that are within earshot of the male’s powerful crowing? While not explicitly covered in the research, it’s commonly observed that roosters often choose elevated and distant spots for crowing. This behavior ensures maximum sound reach while maintaining a safe distance from the hens and chicks, thereby reducing their exposure to harmful noise levels.

 WTF fun facts

Source: “Why roosters don’t go deaf from their own loud crowing” — Phys.org

WTF Fun Fact 13541 – NYC’s Rat Czar


New York City has taken a significant step forward in its war against rodents by appointing Kathleen Corradi as the city’s first-ever “rat czar.”

This initiative is a part of Mayor Eric Adams’ administration’s efforts to address a major quality-of-life and health challenge. Corradi’s role involves coordinating rat reduction efforts across city government agencies, community organizations, and the private sector.

Harlem Rat Mitigation Zone and Funding

As part of this initiative, Mayor Adams also announced the Harlem Rat Mitigation Zone, backed by a $3.5 million investment for Fiscal Year 2023. This investment aims to expand and accelerate rat reduction efforts across Harlem, encompassing Community Boards 9, 10, and 11. The funding will assist in employing new staff, purchasing equipment, and implementing innovative rat mitigation techniques.

Corradi’s strategic plan to combat the rat crisis includes cutting off rats’ food sources and deploying new technologies for detection and extermination. These efforts will harness the expertise of various city agencies like the Department of Health, Parks and Recreation, Housing Authority, Department of Education, Sanitation, and Small Business Services.

The rat mitigation strategy is more than just a quality-of-life issue. It symbolizes the fight against systemic challenges that have long affected New Yorkers, especially in low-income communities and communities of color. The plan aims to provide equitable quality of life experiences for all New Yorkers.

Collaborative Approach and Public Involvement

The strategy emphasizes the importance of each New Yorker playing their part in creating a rat-free city. This includes keeping homes clean, securing trash, destroying potential rat habitats, and adhering to common-sense tips. The city plans to offer Harlem-specific rat academies, teaching residents how to prevent rat infestations on their properties.

In support of the initiative, the Mayor’s Fund to Advance New York City received a donation of over 1,000 Tomcat rodent control products. These will be used across various city locations, aiding the fight against rodent infestations.

Long-Term Vision for the Rat Czar

The appointment of a rat czar marks a new era in New York City’s approach to pest control. The long-term goal is to produce a cleaner, more livable city for future generations. This effort represents a bold and creative approach to tackle one of the city’s most persistent problems.

Kathleen Corradi brings a wealth of experience in community engagement, program development, and facility operations. Her background in science and expertise in rodent mitigation positions her to lead this challenging and crucial initiative effectively.

The Adams administration has shown its commitment to addressing quality-of-life issues through various initiatives, including the ‘Get Stuff Clean’ program. The rat czar appointment further emphasizes this commitment, aiming to make New York City a cleaner and healthier place for its residents.

 WTF fun facts

Source: “Mayor Adams Anoints Kathleen Corradi as NYC’s First-Ever ‘Rat Czar'” — NYC.gov

WTF Fun Fact 13540 – Humans and Giraffes

The anatomy of humans and giraffes shares a surprising similarity. Despite stark differences in appearance and habitat, both species possess exactly seven cervical vertebrae.

This fact offers a fascinating glimpse into the world of vertebrate evolution. It highlights how different species can evolve distinct traits while maintaining a fundamental structural blueprint.

The Seven Vertebrae Similarity

In humans, the seven cervical vertebrae are compact and support head movements like nodding and turning. Each human vertebra is relatively small, with the first two, the atlas and axis, specialized for head rotation. These vertebrae are critical for protecting the spinal cord and supporting the skull.

Giraffes, renowned for their long necks, also have seven cervical vertebrae, but each one is elongated, reaching lengths up to ten inches. This elongation facilitates their tall stature, which is essential for foraging in tall trees. Despite their length, giraffe neck vertebrae maintain flexibility, crucial for their survival in the wild.

The similarity in the number of cervical vertebrae across mammals, including humans and giraffes, suggests an evolutionary blueprint conserved over millions of years. This consistency indicates an optimal balance of neck flexibility and structural support vital across various habitats and lifestyles.

The adaptation in giraffes, where their cervical vertebrae are elongated, showcases evolution’s ability to modify certain traits to meet environmental demands while keeping the overall vertebral count unchanged.

Medical and Scientific Implications for Humans and Giraffes

Studying giraffes can offer insights into human spinal health. Understanding the mechanics of giraffe vertebrae under large physical stress could lead to better treatments and preventive measures for human spinal conditions.

Research into giraffe anatomy can contribute to veterinary sciences, offering better care and conservation strategies for these unique animals. It also adds to our understanding of vertebrate evolution and adaptation.

Ecological and Conservation Aspects

The anatomical similarities between humans and giraffes reflect the interconnectedness of the animal kingdom. This comparison underscores the importance of biodiversity and the need to understand and protect various species, each contributing uniquely to our understanding of life on Earth.

Recognizing these anatomical wonders highlights the importance of conservation efforts, especially for giraffes, which face habitat loss and declining populations in the wild.

 WTF fun facts

Source: “One Good Fact” — Encyclopedia Britannica

WTF Fun Fact 13536 – AI and Rogue Waves

For centuries, sailors have whispered tales of monstrous rogue waves capable of splitting ships and damaging oil rigs. These maritime myths turned real with the documented 26-meter-high rogue wave at Draupner oil platform in 1995.

Fast forward to 2023, and researchers at the University of Copenhagen and the University of Victoria have harnessed the power of artificial intelligence (AI) to predict these oceanic giants. They’ve developed a revolutionary formula using data from over a billion waves spanning 700 years, transforming maritime safety.

Decoding Rogue Waves: A Data-Driven Approach

The quest to understand rogue waves led researchers to explore vast ocean data. They focused on rogue waves, twice the size of surrounding waves, and even the extreme ones over 20 meters high. By analyzing data from buoys across the US and its territories, they amassed more than a billion wave records, equivalent to 700 years of ocean activity.

Using machine learning, the researchers crafted an algorithm to identify rogue wave causes. They discovered that rogue waves occur more frequently than imagined, with about one monster wave daily at random ocean locations. However, not all are the colossal 20-meter giants feared by mariners.

AI as a New-Age Oceanographer

The study stands out for its use of AI, particularly symbolic regression. Unlike traditional AI methods that offer single predictions, this approach yields an equation. It’s akin to Kepler deciphering planetary movements from Tycho Brahe’s astronomical data, but with AI analyzing waves.

The AI examined over a billion waves and formulated an equation, providing a “recipe” for rogue waves. This groundbreaking method offers a transparent algorithm, aligning with physics laws, and enhances human understanding beyond the typical AI black box.

Contrary to popular belief that rogue waves stem from energy-stealing wave combinations, this research points to “linear superposition” as the primary cause. Known since the 1700s, this phenomenon occurs when two wave systems intersect, amplifying each other momentarily.

The study’s data supports this long-standing theory, offering a new perspective on rogue wave formation.

Towards Safer Maritime Journeys

This AI-driven algorithm is a boon for the shipping industry, constantly navigating potential dangers at sea. With approximately 50,000 cargo ships sailing globally, this tool enables route planning that accounts for the risk of rogue waves. Shipping companies can now use the algorithm for risk assessment and choose safer routes accordingly.

The research, algorithm, and utilized weather and wave data are publicly accessible. This openness allows entities like weather services and public authorities to calculate rogue wave probabilities easily. The study’s transparency in intermediate calculations sets it apart from typical AI models, enhancing our understanding of these oceanic phenomena.

The University of Copenhagen’s groundbreaking research, blending AI with oceanography, marks a significant advancement in our understanding of rogue waves. By transforming a massive wave database into a clear, physics-aligned equation, this study not only demystifies a long-standing maritime mystery but also paves the way for safer sea travels. The algorithm’s potential to predict these maritime monsters will be a crucial tool for the global shipping industry, heralding a new era of informed and safer ocean navigation.

 WTF fun facts

Source: “AI finds formula on how to predict monster waves” — ScienceDaily

WTF Fun Fact 13615 – Mars’ Green Glow

Scientists at the University of Liège have captured the first sight of Mars’ green glow.

Did you know Mars emits a glow in the visible range during the night? It was a phenomenon never before seen until now. The discovery by the University of Liège’s scientists offers new insights into the dynamics of the Red Planet’s upper atmosphere and its seasonal variations.

Mars’ Green Glow

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

A Bright Future for Martian Research

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

The Glow of Martian Nights

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

Understanding Mars’ Green Glow and Atmosphere Dynamics

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

 WTF fun facts

Source: “Glow in the visible range detected for the first time in the Martian night” — ScienceaDaily

WTF Fun Fact 13614 – Chimp Warfare

University of Cambridge scientists have uncovered that chimpanzees, much like humans, use strategic high ground for reconnaissance on rival groups during “chimp warfare.” This discovery took place in the West African forests of Côte d’Ivoire. It showcases our closest evolutionary relatives employing a warfare tactic previously thought to be uniquely human.

Chimp Warfare from the Treetops

During a comprehensive three-year study, researchers monitored two neighboring groups of chimpanzees. Their movement patterns revealed a striking preference for elevated terrain when approaching the shared border zone where skirmishes could occur. Researchers noted that the chimpanzees were twice as likely to climb hills en route to this contested area compared to when they ventured within their territory. This suggests a calculated use of the landscape for strategic advantage.

At these vantage points, the primates demonstrated a notable change in behavior. Rather than engaging in their typical noisy foraging or eating, they opted for quiet rest. This behavior allowed them to listen for distant sounds of potential rivals. It also let them make informed decisions about advancing into enemy territory while minimizing the risk of direct conflict.

Strategic Warfare Among Non-Human Primates

The study’s lead author, Dr. Sylvain Lemoine, emphasized the significance of this behavior. “The strategic use of landscape for territorial control reflects a cognitive complexity in chimpanzees that mirrors human war-like strategies,” he explained. This finding suggests that such tactical behavior may have been a part of our evolutionary history. It’s traceable back to the proto-warfare of prehistoric hunter-gatherer societies.

Over the course of their research, the team amassed more than 21,000 hours of tracking data from 58 chimpanzees. The study’s significance lies in its contribution to understanding chimpanzee behavior and implications for evolutionary biology and anthropology.

The study conducted at the Taï Chimpanzee Project indicates that chimpanzees conduct ‘border patrols’ to establish and protect their territory. These patrols are carried out with precision and coordination, reminiscent of a silent hunt. Inselbergs, or isolated rocky outcrops, frequently served as the chosen points for these reconnaissance activities.

The researchers’ observations included instances where these patrols led to expansions of territory or, in rare cases, violent confrontations. Despite these risks, the primary use of hilltop reconnaissance appears to be the avoidance of direct conflict. Chimpanzees preferring to gather information from a distance and reduce the likelihood of violent encounters.

Insights Into Primate Behavior

The discovery that chimpanzees use tactical reconnaissance is a testament to their intelligence and adaptability. More territory means better access to food and higher chances of successful mating, which, as previous research by Lemoine suggests, leads to larger communities with higher birth rates and reduced rival pressure.

This study provides a fascinating glimpse into the complex social behaviors of chimpanzees, offering evidence that tactical thinking and strategic planning are not solely human traits.

 WTF fun facts

Source: “Chimpanzees use hilltops to conduct reconnaissance on rival groups, study finds” — ScienceDaily

WTF Fun Fact 13610 – Creating Plant Biosensors

Scientists at the University of California – Riverside have engineered plant biosensors that change color in the presence of specific chemicals.

Someday, the greenery decorating our homes and gardens might soon be ornamental and an environmental watchdog. (Of course, plants are already good indicators of their surroundings since they tend to wilt or die when things get toxic.)

Innovative Plant Biosensors

It all started with a question: What if a simple house plant could alert you about contaminants in your water? Delving deep into this concept, the UC Riverside team made it a reality. In the presence of a banned, toxic pesticide known as azinphos-ethyl, the engineered plant astonishingly turns a shade of beet red. This development offers a visually compelling way to indicate the presence of harmful substances around us.

Ian Wheeldon, an associate professor of chemical and environmental engineering at UCR, emphasized the groundbreaking nature of this achievement. “In our approach, we ensured the plant’s natural metabolism remains unaffected,” he explained. “Unlike earlier attempts where the biosensor component would hinder the plant’s growth or water absorption during stress, our method doesn’t disrupt these essential processes.”

The team’s findings, elaborated in a paper published in Nature Chemical Biology, unveiled the secret behind this transformative process. At the heart of the operation lies a protein known as abscisic acid (ABA). Under stressful conditions like droughts, plants produce ABA, signaling them to conserve water and prevent wilting. The research team unlocked the potential of ABA receptors, training them to latch onto other chemicals besides ABA. When these receptors bind to specific contaminants, the plant undergoes a color change.

From Plant to Yeast: Expanding the Biosensor Spectrum

The UC Riverside team didn’t just stop at plants. They expanded their research horizon to include yeast, turning this organism into a chemical sensor. Remarkably, yeast exhibited the capability to respond to two distinct chemicals simultaneously, a feat yet to be achieved in plants.

Sean Cutler, UCR professor of plant cell biology, highlighted the team’s vision. “Imagine a plant that can detect up to 100 banned pesticides,” he said. “The potential applications, especially in environmental health and defense, are immense. However, there’s a long way to go before we can unlock such extensive sensing capabilities.”

The Path Forward for Plant Biosensors

While the initial results are promising, commercial growth of these engineered plants isn’t on the immediate horizon. Stringent regulatory approvals, which could span years, are a significant hurdle. Moreover, as a nascent technology, there are numerous challenges to overcome before it finds a place in real-world applications, like farming.

Yet, the future looks bright. “The potential extends beyond just pesticides,” Cutler added. “We aim to detect any environmental chemical, including common drugs that sometimes seep into our water supplies. The technology to sense these contaminants is now within reach.”

 WTF fun facts

Source:

WTF Fun Fact 13607 – Arizona Desert Fish

The discovery of Arizona desert fish is making researchers rethink the history of the world!

In a surprising revelation, researchers at the University of Minnesota uncovered an unexpected treasure trove of longevity within the freshwater fishes of the Arizona desert. Their study, recently published in Scientific Reports, highlights three species within the Ictiobus genus, also known as buffalofishes, with lifespans exceeding 100 years.

This groundbreaking discovery not only shifts our understanding of vertebrate aging but also positions these desert dwellers as potentially key players in aging studies across disciplines.

Longevity of Arizona Desert Fish Known as Buffalofishes

The central figures of this study are the bigmouth buffalo, smallmouth buffalo, and black buffalo. Native to Minnesota, these species often fall victim to misidentification, mistakenly grouped with invasive species like carp. Consequently, inadequate fishing regulations fail to protect these potential longevity lighthouses. The collaborative research effort, led by Alec Lackmann, Ph.D., from the University of Minnesota Duluth, delved into the lifespans of these species and unraveled their potential in aging research.

Dr. Lackmann’s approach to determining the age of the buffalofishes diverges from traditional scale examination. The team extracted otoliths, or earstones, from the cranium of the fishes. Like the rings on a tree, these otoliths develop a new layer annually. Through meticulous thin-sectioning and examination under a compound microscope, researchers could count these layers, unlocking the true age of the fish.

Remarkable Findings and Implications

The study’s results were nothing short of extraordinary:

  • Unprecedented longevity among freshwater fishes, with three species living over a century.
  • A population in Apache Lake, Arizona, primarily composed of individuals over 85 years old.
  • The likely survival of original buffalofishes from the 1918 Arizona stocking.
  • The development of a catch-and-release fishery, enhancing our understanding of fish longevity and identification.

Interestingly, these centenarian fishes were originally stocked into Roosevelt Lake, Arizona, in 1918. While their counterparts in Roosevelt Lake faced commercial fishing, the Apache Lake population thrived, undisturbed until recent angling activities.

Collaborative Efforts and Future Prospects

The study also highlights a robust collaboration between conservation anglers and scientists, with anglers contributing to scientific outreach and learning. When anglers observed unique markings on the buffalofishes, they reached out to Dr. Lackmann, initiating a partnership that would lead to this study’s pivotal findings.

Looking ahead, Dr. Lackmann envisions a bright future for studying these unique fish. Their exceptional longevity offers a window into their DNA, physiological processes, and disease resistance across a wide age range. The genus Ictiobus could become a cornerstone in gerontological research, with Apache Lake potentially emerging as a scientific hub for diverse research endeavors.

 WTF fun facts

Source: “Study uncovers hundred-year lifespans for three freshwater fish species in the Arizona desert” — ScienceDaily