WTF Fun Fact 13734 – Bigger Brains, Longer Yawns

Researchers have discovered that vertebrates with larger brains and more neurons tend to have longer yawns. This fascinating correlation sheds light on the complexity of yawning and its ties to brain function.

Yawning involves a deep inhalation followed by a slow exhalation, stretching the jaw and increasing blood flow to the brain. This process helps cool the brain, promoting alertness and cognitive function. The duration of a yawn appears linked to the brain’s size and neuron count, making it more than just a sign of boredom or tiredness.

The Science Behind Yawning

Scientists have studied yawning across various species to understand its role and significance. Research shows that yawning increases with brain size and neuron density. Vertebrates, like mammals and birds, exhibit yawning behaviors, with larger-brained species showing notably longer yawns.

Yawning likely serves to regulate brain temperature and promote alertness. When we yawn, the stretching of the jaw and the intake of cool air help reduce brain temperature. This cooling effect can enhance cognitive function, making yawning an essential mechanism for maintaining brain efficiency.

Studies suggest that longer yawns in larger-brained vertebrates may facilitate more effective brain cooling. The increased neuron density in these animals requires more robust cooling mechanisms to maintain optimal brain function. Thus, a longer yawn duration could be an adaptive trait to support the needs of a more complex brain.

Comparative Yawning Across Species

Research comparing yawning durations among different species reveals intriguing patterns. For instance, humans, with relatively large brains and high neuron counts, have yawns lasting around six seconds. In contrast, smaller-brained animals, like mice, have yawns lasting just one to two seconds.

Birds also demonstrate this trend, with larger species, such as owls, exhibiting longer yawns than smaller birds, like sparrows. This pattern supports the idea that brain size and neuron density influence yawn duration across vertebrates.

The correlation between brain complexity and yawning duration highlights the evolutionary significance of this behavior. Yawning may have evolved to enhance brain function, particularly in species with larger, more complex brains. This adaptive mechanism likely provides a selective advantage by supporting higher cognitive abilities and alertness.

Longer Yawns and Brain Health

Understanding the link between yawning and brain function has implications for brain health research. Yawning could serve as an indicator of brain activity and cognitive function in both humans and animals. For example, changes in yawning frequency or duration could reflect alterations in brain health or function.

In humans, excessive yawning may signal underlying medical conditions affecting the brain, such as multiple sclerosis or brain injury. Conversely, reduced yawning could indicate diminished brain function or alertness. Monitoring yawning patterns could thus provide valuable insights into brain health and function.

Furthermore, studying yawning in animals can enhance our understanding of their cognitive abilities and brain function. By analyzing yawning behaviors, researchers can gain insights into the neural and physiological mechanisms underlying brain function across different species.

WTF fun facts

Source: “There’s an Odd Correlation Between Brain Size And Yawning, Study Reveals” — ScienceAlert

WTF Fun Fact 13733 – Flame-Throwing Robot Dog


Throwflame, an Ohio-based company, has introduced Thermonator, a flame-throwing robot dog now available for $9,420. What a steal.

This fiery beast combines a quadruped robot with an ARC flamethrower, creating the world’s first flamethrower-wielding robot dog. If you’ve ever wanted a pet that can roast marshmallows from 30 feet away, Thermonator is here to fulfill that oddly specific dream!

Fueled by gasoline or napalm, Thermonator can blast fire up to 30 feet, making it perfect for impressing your neighbors – or terrifying them. It also features a one-hour battery, Wi-Fi, and Bluetooth connectivity, so you can control this fiery pup via your smartphone.

Thermonator even has a Lidar sensor for mapping and obstacle avoidance, laser sighting, and first-person-view navigation through an onboard camera. It uses a version of the Unitree Go2 robot quadruped, which alone costs $1,600.

Meet Thermonator: The $10,000 Flame-Throwing Robot Dog

Thermonator’s flamethrowing skills open up a range of potential uses. Throwflame suggests applications like wildfire control and prevention, agricultural management, ecological conservation, snow and ice removal, and entertainment and special effects. Essentially, if it involves setting things on fire, Thermonator is your go-to gadget.

For wildfire control, Thermonator could help create controlled burns to prevent larger wildfires. In agriculture, it might assist in clearing fields or giving pesky weeds a hot farewell. Its use in ecological conservation could involve controlled burning to manage vegetation.

Ok, sure.

In snowy climates, it could serve as the world’s hottest snow blower. For entertainment, it’s a pyrotechnic dream come true, perfect for dramatic effects in films or epic backyard barbecues. And we have the feeling that if you need your flamethrower in the form of a dog, you’re probably using it for some type of entertainmen.

A Dystopian Moment?

While they sound like a device straight out of a dystopian sci-fi movie, flamethrowers, including Thermonator, are legal in 48 U.S. states. They aren’t classified as firearms by federal agencies, though they fall under general product liability and criminal laws.

Specific restrictions exist in Maryland, where a Federal Firearms License is required, and in California, where the flame range cannot exceed 10 feet.

Even with its legality, flamethrowers are not exactly toys. They can easily start fires, cause property damage, and harm people. So, if you decide to get one, handle it with care. Thermonator’s advanced features, like obstacle avoidance and first-person navigation, aim to enhance safety, but users must still exercise caution. In other words, don’t try to light your birthday candles with it.

A Nod to Flamethrower History

Thermonator joins the ranks of other notable flame-throwing devices, such as Elon Musk’s Boring Company flamethrower. Back in 2018, Musk’s flamethrower sold 10,000 units in just 48 hours, causing quite a stir due to its potential risks.

Unlike traditional flamethrowers, Thermonator combines the latest in robotics with pyrotechnics, offering a high-tech twist on fire-wielding gadgets. See for yourself:

WTF fun facts

Source: “You can now buy a flame-throwing robot dog for under $10,000” — Ars Technica

WTF Fun Fact 13731 – The Weight of the Internet

Have you ever stopped to consider the weight of the internet? Ok, probably not.

But despite its intangible nature, the internet has a physical weight. The internet operates on electricity, which consists of electrons that have mass. University of California professor John D. Kubiatowicz explained this concept in a 2011 New York Times article. He discussed how electrons, despite their minuscule mass of 9.11 x 10^-31 kilograms, contribute to the internet’s weight.

To understand the internet’s weight, consider an e-reader loaded with books. E-readers use flash memory, which involves trapping electrons in a higher energy state to store data.

Though the number of electrons remains constant, their higher energy state increases the e-reader’s weight by a minuscule amount. For example, loading a 4-gigabyte e-reader with books changes its energy by 1.7 x 10^-5 joules, translating to a weight increase of 10^-18 grams.

While this difference is extremely small, it demonstrates the principle that data storage impacts physical weight.

Calculating the Weight of the Internet

Expanding this concept to the entire internet involves considering the global network of servers. Approximately 75 to 100 million servers worldwide support the internet. These servers collectively generate about 40 billion watts of electricity. Given that an ampere, the unit of electric current, involves the movement of 10^18 electrons per second, we can estimate the internet’s weight.

By calculating the total number of electrons in motion and their individual mass, scientists estimate the internet’s weight to be about 50 grams.

This weight is equivalent to a medium-sized strawberry. Every email, website, online game, and digital interaction contributes to this overall mass.

Implications and Fascination

Understanding the internet’s weight highlights the physical realities of our digital world. While we perceive the internet as intangible, it relies on physical components and energy. The electrons powering data transfer and storage have a measurable mass, illustrating the connection between digital information and physical science.

This knowledge emphasizes the importance of efficient data management and energy use in maintaining the internet. As the internet continues to expand, optimizing server efficiency and reducing energy consumption becomes crucial.

These efforts not only lower operational costs but also minimize the environmental impact of our digital infrastructure.

WTF fun facts

Source: “The World Contained in a Strawberry” — Futurism

WTF Fun Fact 13730 – Ocean Viruses

Ocean viruses play a crucial role in marine ecosystems. They are the most abundant entities in the ocean, with numbers reaching into the millions per milliliter of seawater.

Despite their size, these tiny organisms have a massive impact on marine life and global processes. Ocean viruses infect marine microorganisms, including bacteria and algae, influencing nutrient cycles and energy flows in the ocean.

Marine viruses help control the population of their hosts.

By infecting and lysing (bursting) these cells, viruses release organic matter back into the water. This process, known as the viral shunt, redirects carbon and nutrients away from higher trophic levels. Instead, these nutrients remain available for microbial use, maintaining the balance of the marine food web.

The Diversity and Impact of Ocean Viruses

Ocean viruses exhibit remarkable diversity. Scientists have identified thousands of different viral species in marine environments. This diversity is crucial for the stability of marine ecosystems.

Viruses infect a wide range of hosts, from tiny bacteria to larger plankton. By doing so, they influence the abundance and diversity of these organisms.

Viruses also play a role in genetic exchange among marine organisms. Through a process called horizontal gene transfer, viruses can transfer genes between different species. This gene transfer can drive evolution and adaptation in marine microorganisms.

Additionally, some viruses carry genes that enhance the metabolic capabilities of their hosts, influencing biogeochemical cycles.

Viruses and Marine Food Webs

Ocean viruses significantly impact marine food webs. By lysing microbial cells, they release dissolved organic matter, which becomes available to other microorganisms. This process supports the microbial loop, a critical component of the ocean’s nutrient cycling. The microbial loop recycles nutrients, making them available to support primary production and the broader marine food web.

Viruses can also influence the population dynamics of marine organisms. By controlling the abundance of certain species, they can shape the composition of microbial communities. This control can have cascading effects on the entire ecosystem, influencing everything from nutrient availability to the abundance of larger marine animals.

Research and Implications

Research on ocean viruses is expanding our understanding of marine ecosystems. Scientists use advanced techniques like metagenomics to study viral diversity and function. Metagenomics allows researchers to analyze genetic material from environmental samples, providing insights into the vast array of viral genes present in the ocean.

Understanding ocean viruses has important implications for climate science.

Viruses play a role in the ocean’s carbon cycle by influencing the fate of organic carbon. By lysing cells, they help sequester carbon in the deep ocean, affecting global carbon storage. This process is crucial for understanding how the ocean mitigates climate change by absorbing carbon dioxide from the atmosphere.

WTF fun facts

Source: “Viral infection in the ocean—A journey across scales” — PLOS Biology

WTF Fun Fact 13729 – The White Shark Cafe

The White Shark Cafe is a mysterious mid-Pacific region where great white sharks gather. This area, located between Hawaii and Baja California, has fascinated scientists for years. Sharks migrate thousands of miles to reach this spot, usually during spring and early summer. The purpose of their journey to this remote location remains largely unknown, though scientists continue to study it.

Scientists discovered the White Shark Cafe through satellite tagging. They tracked the movements of great white sharks, leading to the identification of this unique area. Despite its remote location and depth, the café attracts a significant number of sharks annually. This gathering area is essential for understanding great white shark behavior and migration patterns.

Shark Behavior at the White Shark Cafe

The behavior of sharks at the White Shark Cafe is intriguing. While there, the sharks exhibit deep diving patterns, often diving to depths of 1,500 feet. They alternate between these deep dives and periods near the surface. This pattern suggests they might be hunting for prey or engaging in social behaviors.

Scientists have proposed several theories about why sharks gather at the White Shark Cafe.

Some believe it may serve as a breeding ground, though no mating has been observed. Others think the sharks might be hunting for squid or other deep-sea creatures that are abundant in this area. Another theory is that the café might serve as a social meeting point for sharks from different regions.

Research and Discoveries

Research at the White Shark Cafe has yielded valuable insights into shark behavior. Scientists have used satellite tags and underwater cameras to monitor shark activities in this area. These technologies have provided data on diving patterns, travel routes, and potential prey species. The findings have challenged previous assumptions about shark migration and social behavior.

The research has also revealed the sharks’ preference for this area’s unique oceanographic features. The White Shark Cafe’s location in the mid-Pacific provides a mix of deep and shallow waters, creating a diverse habitat. This diversity likely supports a range of prey species, making it an attractive spot for sharks.

The Importance of the White Shark Café

Understanding the White Shark Café is crucial for conservation efforts. By studying this area, scientists can learn more about the needs and behaviors of great white sharks. This knowledge can inform strategies to protect these important marine predators. The café’s role in shark migration highlights the need to protect not just coastal areas but also critical offshore habitats.

Conservationists emphasize the importance of international cooperation in protecting the White Shark Café. Since the area lies in international waters, coordinated efforts are needed to ensure its preservation. Protecting this unique shark gathering spot is essential for maintaining healthy shark populations and the overall balance of marine ecosystems.

WTF fun facts

Source: “Voyage to the White Shark Café” — Monterey Bay Aquarium

WTF Fun Fact 13727 – Hot Dr. Pepper

Hot Dr. Pepper occupies a unique niche in the world of beverages. This drink, which originally emerged in the 1960s, has a fascinating history tied to corporate strategy and changing consumer tastes. The idea was simple: transform a fizzy soft drink into a warm winter drink.

The transformation involves heating Dr. Pepper to about 180 degrees and serving it with a thin slice of lemon. Although it gained initial popularity in the American South, it gradually faded into obscurity.

The Origins of Hot Dr. Pepper

The history of Hot Dr. Pepper dates back to a time when beverage companies sought to maintain sales during colder months. Dr. Pepper recognized the dip in cold beverage consumption and cleverly marketed this warm variation. The aim was to provide customers with a comforting drink that could still deliver a caffeine kick despite being heated. The drink gained traction, especially in small Southern towns, where it developed a dedicated following. Despite its initial success, the drink never achieved mainstream appeal, and its popularity waned over time.

Preparing and Serving Hot Dr. Pepper

The drink is straightforward to prepare. The Dr. Pepper website suggests heating the soda in a saucepan until it reaches 180 degrees. This heating process removes the carbonation, leaving a warm, thick, and sweet beverage. To enhance the flavor, a thin slice of lemon should be placed in the drink just before serving. The thinness of the lemon slice is crucial, as too much lemon can overpower the delicate balance of sweetness and tartness in the drink.

Modern Relevance and Appeal

Hot Dr. Pepper deserves a revival in today’s culinary world, which has embraced retro and nostalgic foods. The drink provides warmth and comfort on cold days and serves as a unique alternative to more traditional hot drinks like coffee, tea, or cider.

Some people add a splash of rum to their Hot Dr. Pepper, transforming it into a “Boomer,” which was a popular twist in mid-century advertisements. This variation is ideal for cozy gatherings during the winter season, adding a fun and historical touch to any social occasion.

Though it may not be for everyone, Hot Dr. Pepper offers a glimpse into past beverage marketing strategies. The drink’s sweetness may not suit all palates, but it’s worth trying at least once. If you can get your hands on sugar-sweetened, glass-bottled Dr. Pepper, the drink may taste even better, providing a more authentic retro experience.

Hot Dr. Pepper is quite the conversation starter. Whether you drink it straight or with a splash of rum, it’s worth a try.

WTF fun facts

Source: “Have You Ever Tried Hot Dr. Pepper?” — Serious Eats

WTF Fun Fact 13726 – The Word Scientist


The word “scientist” originated in the 19th century when William Whewell, a Cambridge historian and philosopher, sought to create a unifying term for those engaged in the sciences. Before this, various terms like “natural philosopher” and “savant” were used.

Whewell considered several options before settling on “scientist,” inspired by the word “artist.” This designation emphasized the interconnectedness of different scientific disciplines and reflected the artistry involved in scientific discovery.

In a short time, “scientist” became widely accepted and shaped how we perceive scientific professions today.

The Birth of a New Term

Before “scientist,” the field of science didn’t have a unified term to describe its practitioners. Individuals like Isaac Newton or Charles Darwin were referred to as “natural philosophers,” which suggested their work was rooted in philosophy rather than practical science. Other terms like “savant” and the German “naturforscher” were floated but never gained traction.

William Whewell’s Contribution

William Whewell, known for his contributions to multiple disciplines, sought to encapsulate the essence of scientific exploration. His work on “The Philosophy of the Inductive Sciences” paved the way for standardizing scientific methods and terminology. The idea was to encapsulate scientific disciplines into one collective term that reflected the exploratory nature of science.

Whewell suggested “scientist” to refer to those who engage in scientific inquiry, much like “artist” describes those involved in artistic pursuits. Initially, he was concerned that the term sounded too close to “economist” or “atheist,” both having negative connotations in that era. However, he decided to adopt it, and the term quickly caught on, symbolizing a new identity for those exploring various scientific disciplines.

The Legacy of the Word Scientist

The term “scientist” has since gained universal acceptance and shaped how the world perceives individuals in this field. It emphasizes the unity among diverse scientific disciplines and acknowledges the creativity and ingenuity in scientific research.

WTF fun facts

Source: “How The Word ‘Scientist’ Came To Be” — NPR

WTF Fun Fact 13725 – Liver Response to Food

A recent study has unveiled a fascinating liver response triggered by the mere sight and smell of food, showcasing the body’s intricate connection between sensory input and metabolic processes.

Food Cues and Rapid Liver Response

Have you ever wondered what happens inside your body when you’re hungry and suddenly see or smell delicious food? Researchers from the Max Planck Institute for Metabolism Research have discovered a fascinating process in mice that begins in the brain and reaches the liver in just minutes. Their study, recently published in Science, could have significant implications for understanding and treating type 2 diabetes.

When hungry mice were exposed to the sight and smell of food without eating it, their liver cells underwent rapid changes. The mitochondria, crucial for metabolism and energy production, adapted quickly to prepare for sugar metabolism. This reaction was triggered by the activation of specific nerve cells in the brain known as POMC neurons.

The Science Behind the Sensory Influence

The researchers focused on how the liver’s mitochondria changed upon just seeing and smelling food. This process involves a specific phosphorylation—a chemical modification important for regulating protein activity—within the mitochondria. Phosphorylation appeared to increase the liver’s sensitivity to insulin, an essential hormone for controlling blood sugar levels.

Sinika Henschke, the study’s lead author, explains the significance of these findings. “We already knew that our bodies prepare for food intake by producing saliva and digestive acids,” says Henschke. “But now, we’ve seen how the liver, too, prepares rapidly through changes in the mitochondria.”

The study further reveals a direct link between sensory perception of food and insulin sensitivity adjustments in the body. Jens Brüning, head of the study and director at the Max Planck Institute, emphasizes the importance of this discovery. “Our study shows how closely connected sensory experiences of food are to adaptive processes in the mitochondria and insulin sensitivity. This understanding is crucial, particularly because insulin sensitivity often diminishes in type 2 diabetes.”

Implications for Diabetes Treatment

These insights into the liver’s immediate response to food cues through brain signaling open new avenues for treating type 2 diabetes. By harnessing the body’s natural response mechanisms, researchers hope to develop methods to enhance insulin sensitivity and manage diabetes more effectively. Therefore, understanding these rapid adaptive processes in the liver can help in designing interventions that mimic or enhance the body’s natural responses to food stimuli, potentially offering a novel approach to diabetes care.

In conclusion, this groundbreaking research not only deepens our understanding of the body’s interconnected systems but also offers hope for new treatments that could one day benefit millions of people with diabetes. As we continue to uncover the complex relationships between our senses, the brain, and metabolic processes, the potential for innovative therapeutic strategies expands, potentially transforming how we manage and treat metabolic diseases.

WTF fun facts

Source: Food in sight? The liver is ready! — ScienceDaily

WTF Fun Fact 13724 – Robotic Locomotion

Apparently, the field of robotic locomotion is moving more slowly than expected.

For years, robotics engineers have been on a mission to develop robots that can walk or run as efficiently as animals. Despite investing millions of dollars and countless hours into research, today’s robots still fall short of the natural agility and endurance exhibited by many animals.

Dr. Max Donelan from Simon Fraser University notes some impressive examples from the animal kingdom: “Wildebeests undertake thousands of kilometers of migration over rough terrain, mountain goats scale sheer cliffs, and cockroaches swiftly adapt even after losing a limb.” In contrast, current robotic technologies are not yet capable of replicating such feats of endurance, agility, and robustness.

Insights from Comparative Research

A team of leading scientists and engineers from various institutions recently conducted a detailed study to understand why robots lag behind animals. Published in Science Robotics, their research compared the performance of robot subsystems—power, frame, actuation, sensing, and control—to their biological counterparts. The team included experts like Dr. Sam Burden from the University of Washington and Dr. Tom Libby from SRI International.

Interestingly, the study found that while individual engineered subsystems often outperform biological ones, animals excel in the integration and control of these components at the system level. This integration allows for the remarkable capabilities observed in nature, which robots have yet to achieve.

Dr. Kaushik Jayaram from the University of Colorado Boulder, another contributor to the study, highlighted this point. He explained that while engineered parts might individually exceed their natural equivalents, the holistic performance of animals in motion remains unmatched. This suggests that the real challenge lies not in improving individual robot components but in enhancing how they work together as a system.

The Path Forward in Robotic Locomotion

The researchers remain optimistic about the future of robotics, noting the rapid progress made in a relatively short time compared to the millions of years of natural evolution. Dr. Simon Sponberg from the Georgia Institute of Technology pointed out the advantage of directed engineering over natural evolution: “We can update and improve robot designs with precision, learning from each iteration and immediately applying these lessons across all machines.”

The study not only sheds light on the current limitations of robotic technologies but also charts a course for future developments. By focusing on better integration and control mechanisms, inspired by biological systems, engineers hope to close the gap between robotic and animal locomotion. This advancement could revolutionize how robots are used in challenging environments, from disaster recovery to navigating the urban landscape.

Dr. Donelan concluded with a forward-looking statement: “As we learn from biology to better integrate and control robotic systems, we can achieve the level of efficiency, agility, and robustness that mirrors the natural world.”

WTF fun facts

Source: “Why can’t robots outrun animals?” — ScienceDaily