WTF Fun Fact 13636 – AI and Rogue Waves

For centuries, sailors have whispered tales of monstrous rogue waves capable of splitting ships and damaging oil rigs. These maritime myths turned real with the documented 26-meter-high rogue wave at Draupner oil platform in 1995.

Fast forward to 2023, and researchers at the University of Copenhagen and the University of Victoria have harnessed the power of artificial intelligence (AI) to predict these oceanic giants. They’ve developed a revolutionary formula using data from over a billion waves spanning 700 years, transforming maritime safety.

Decoding Rogue Waves: A Data-Driven Approach

The quest to understand rogue waves led researchers to explore vast ocean data. They focused on rogue waves, twice the size of surrounding waves, and even the extreme ones over 20 meters high. By analyzing data from buoys across the US and its territories, they amassed more than a billion wave records, equivalent to 700 years of ocean activity.

Using machine learning, the researchers crafted an algorithm to identify rogue wave causes. They discovered that rogue waves occur more frequently than imagined, with about one monster wave daily at random ocean locations. However, not all are the colossal 20-meter giants feared by mariners.

AI as a New-Age Oceanographer

The study stands out for its use of AI, particularly symbolic regression. Unlike traditional AI methods that offer single predictions, this approach yields an equation. It’s akin to Kepler deciphering planetary movements from Tycho Brahe’s astronomical data, but with AI analyzing waves.

The AI examined over a billion waves and formulated an equation, providing a “recipe” for rogue waves. This groundbreaking method offers a transparent algorithm, aligning with physics laws, and enhances human understanding beyond the typical AI black box.

Contrary to popular belief that rogue waves stem from energy-stealing wave combinations, this research points to “linear superposition” as the primary cause. Known since the 1700s, this phenomenon occurs when two wave systems intersect, amplifying each other momentarily.

The study’s data supports this long-standing theory, offering a new perspective on rogue wave formation.

Towards Safer Maritime Journeys

This AI-driven algorithm is a boon for the shipping industry, constantly navigating potential dangers at sea. With approximately 50,000 cargo ships sailing globally, this tool enables route planning that accounts for the risk of rogue waves. Shipping companies can now use the algorithm for risk assessment and choose safer routes accordingly.

The research, algorithm, and utilized weather and wave data are publicly accessible. This openness allows entities like weather services and public authorities to calculate rogue wave probabilities easily. The study’s transparency in intermediate calculations sets it apart from typical AI models, enhancing our understanding of these oceanic phenomena.

The University of Copenhagen’s groundbreaking research, blending AI with oceanography, marks a significant advancement in our understanding of rogue waves. By transforming a massive wave database into a clear, physics-aligned equation, this study not only demystifies a long-standing maritime mystery but also paves the way for safer sea travels. The algorithm’s potential to predict these maritime monsters will be a crucial tool for the global shipping industry, heralding a new era of informed and safer ocean navigation.

 WTF fun facts

Source: “AI finds formula on how to predict monster waves” — ScienceDaily

WTF Fun Fact 13611 – Turning Data Into Music

Scientists are turning data into music to see if it can help us understand large and intricate datasets in new and interesting ways.

Tampere University and Eastern Washington University’s groundbreaking “data-to-music” algorithm research transforms intricate digital data into captivating sounds. And the researchers have presented a novel and potentially revolutionary approach to data comprehension.

Sonic Data Interpretation

At TAUCHI (Tampere Unit for Computer-Human Interaction) in Finland and Eastern Washington University in the USA, a dynamic research group dedicated half a decade to exploring the merits of data conversion into musical sounds. Funded by Business Finland, their groundbreaking findings have been encapsulated in a recent research paper.

Jonathan Middleton, DMA, the main contributor to the study, serves as a professor of music theory and composition at Eastern Washington University. Simultaneously, he is recognized as a visiting researcher at Tampere University. Under his guidance, the research pivoted on enhancing user engagement with intricate data variables using “data-to-music” algorithms. To exemplify their approach, the team utilized data extracted from Finnish meteorological records.

Middleton emphasizes the transformative potential of their findings. “In today’s digital era, as data collection and deciphering become intertwined with our routine, introducing fresh avenues for data interpretation becomes crucial.” So, he champions the concept of a ‘fourth’ dimension in data interpretation, emphasizing the potential of musical characteristics.

Turning Data Into Music

Music is not just an art form; it captivates, entertains, and resonates with human emotions. It enhances the experience of films, video games, live performances, and more. Now, imagine the potential of harnessing music’s emotive power to make sense of complex data sets.

Picture a basic linear graph displaying heart rate data. Now, amplify that visualization with a three-dimensional representation enriched with numbers, hues, and patterns. But the true marvel unfolds when a fourth dimension is introduced, where one can audibly engage with this data. Middleton’s quest revolves around identifying which mode or dimension maximizes understanding and interpretation of the data.

For businesses and entities that anchor their strategies on data interpretation to tailor offerings, Middleton’s research presents profound implications. So he believes that their findings lay the groundwork for data analysts worldwide to tap into this fourth, audial dimension, enhancing understanding and decision-making.

A Symphony of Data Possibilities

As data continues to drive decision-making processes across industries, the quest for innovative interpretation techniques remains relentless. Tampere University and Eastern Washington University’s “data-to-music” research illuminates a path forward. With the potential to hear and emotionally connect with data, industries can achieve a deeper understanding, making data analysis not just a technical task but also an engaging sensory experience.

 WTF fun facts

Source: “Complex data becomes easier to interpret when transformed into music” — ScienceDaily