WTF Fun Fact 13587 – Ostrich Speed

You’ve heard of horsepower, but how about ostrich speed? It turns out ostriches are actually capable of moving faster than horses!

Native to Africa, ostriches might seem like unlikely sprinters due to their large size and seemingly unwieldy, flightless nature. But their unique anatomy and evolutionary adaptions allow them to move FAST.

The Mechanics of Ostrich Speed

The first thing that might strike you about an ostrich is its legs. They’re long and strong. And they account for a substantial portion of the ostrich’s height, which can reach up to 9 feet. Unlike horses, which have multiple toes with hooves, ostriches stand and run on just two toes. This two-toed design provides a more extended surface area, enabling better traction and speed on the African plains.

Muscle distribution plays a significant role in ostrich speed as well. Ostriches have a higher concentration of fast-twitch muscle fibers in their legs compared to horses. These fibers contract very fast, and they provide the power necessary for rapid sprints. The long tendons in and ostrich’s legs also act like springs. They store and release energy efficiently with each stride.

So, as they run, an ostrich’s stride can stretch up to 15 feet!

Comparative Speeds: Ostriches vs. Horses

While a fast horse can reach speeds of up to 55 mph during a short sprint, it typically averages around 30-40 mph during a more extended run. The ostrich can consistently maintain speeds of 45 mph over longer distances. Moreover, it can reach peak velocities of up to 60 mph in shorter bursts.

This consistency and top speed give the ostrich an edge in a hypothetical race against its four-legged counterpart.

But it’s not just about speed. Ostriches also have amazing stamina. They can maintain their swift pace for extended periods, allowing them to traverse the vast African landscapes in search of food and water.

A horse might tire after a long gallop, but the ostrich’s energy-efficient anatomy lets it cover vast distances without wearing out. This endurance is especially crucial in their native habitat since resources can be sparse, and threats from predators are always around.

Another fascinating aspect of the ostrich’s ability to maintain high speeds over time is its temperature regulation mechanism. Ostriches have a unique system of blood vessels in their legs. These help dissipate heat. So, as they run, the large surface area of their legs allows for more efficient cooling and prevents them from overheating.

Evolution’s Role in Ostrich Speed

The ostrich’s need for speed didn’t just arise out of nowhere. Over millions of years, evolution fine-tuned this bird for its specific environment. The plains of Africa, with its predators and the need to roam large areas for food, necessitated both speed and stamina. In response to these pressures, the ostrich developed its remarkable running capabilities.

Similarly, the horse’s evolution was shaped by its environment and survival needs. While they, too, evolved to be fast runners, their evolutionary trajectory emphasized different aspects of speed, maneuverability, and strength suitable for their respective ecosystems.

 WTF fun facts

Source: “Can Ostriches Run Faster than Horses?” — HorseRidingHQ

WTF Fun Fact 13584 – Owls Don’t Have Eyeballs

Owls don’t have eyeballs. At least not in the traditional sense.

If Owls Don’t Have Eyeballs, What Do They Have?

Owls possess elongated, tubular eyes that are fixed in their sockets. This unique design provides them with exceptional vision, especially in low light.

The reason behind this peculiar eye shape is all about maximizing light intake and enhancing their depth perception. With their long, tube-shaped eyes, owls can collect and process a significant amount of light. This feature is vital for a creature that does most of its hunting during twilight hours or in the dark of the night.

Now, since owls can’t move their eyes within their sockets like humans can, they’ve developed an incredible neck flexibility. An owl can rotate its head up to 270 degrees in either direction. Imagine turning your head almost entirely backward! This ability allows them to have a wide field of view without needing to move their bodies.

The Trade-Off

There’s always a trade-off in nature. While owls can see far and wide with their tubular eyes, their peripheral vision is limited. That’s where their keen sense of hearing comes into play. Together with their exceptional eyesight, their auditory skills make them formidable nocturnal hunters.

An owl’s retina has an abundance of rod cells, which are sensitive to light and movement. These cells help the owl detect even the slightest movement of prey in dimly lit conditions. And while they have fewer cone cells, responsible for color vision, recent studies suggest that owls can see some colors, particularly blue.

Given the size and prominence of an owl’s eyes, protecting them is crucial. Owls have a third eyelid known as a nictitating membrane. This translucent lid sweeps across the eye horizontally, acting as a windshield wiper to remove dust and debris. It also helps in keeping their eyes moist.

The unique eye structure of owls has fascinated scientists and researchers for years. By studying how owls see, we gain insights into improving visual technologies, especially those required to function in low-light conditions.

 WTF fun facts

Source: “Do Owls Have Eyeballs: The Unique Vision And Skills Of Owls” — DiscoveryNatures

WTF Fun Fact 13583 – Upside-Down Jellyfish

Imagine wandering through a tranquil lagoon and spotting a group of upside-down jellyfish resting with their bell against the seafloor.

Unlike most of their free-swimming counterparts, these jellyfish are often found lounging, with their oral arms extending towards the sun. But why such an odd pose?

Why are upside-down jellyfish upside-down?

The upside-down posture serves a dual purpose. Firstly, this position facilitates the pulsing movement of their bell, pushing water over the jellyfish’s body, ensuring a steady flow of oxygen and food. Secondly, the upward-facing tentacles benefit from the sunlight, which assists the photosynthetic algae, zooxanthellae, residing in the jellyfish tissue. This unique position allows them to gain energy from both their food and the sun!

Upside-down jellyfish love to hang out in the sunlit, shallow waters of coastal regions, especially around areas bustling with mangroves. Sunlight plays a pivotal role in their survival as it powers the photosynthetic algae inside them. Think of them like underwater solar panels!

In Australia, they are predominantly spotted in the tropical territories, ranging from Yampi Sound in Western Australia to Queensland’s Gold Coast. However, there’s a twist: these jellies have made surprise appearances in temperate coastal lakes of New South Wales, and even in the unusually warm waters around a powerplant in Adelaide.

The diet and life cycle of the upside-down jellyfish

When it comes to diet, these jellyfish are both photosynthetic and predatory. The zooxanthellae within provides up to a whopping 90% of their nutritional needs through photosynthesis, while the remaining 10% is sourced from the ocean buffet of zooplankton. They employ a two-step tactic for this: first, they stun their prey using their nematocysts or stinging cells, and then deploy a mucus to ensnare and consume the tiny creatures.

Although equipped with the ability to swim traditionally by pulsing their bell, these jellies prefer the floor. Their stationary, upside-down lifestyle may seem lazy, but it is a strategic adaptation that allows them to harness energy effectively from the sun through their symbiotic algae.

The lifecycle of these jellies is a captivating dance of nature. After males release their reproductive cells, these combine with the female’s eggs in the open water. Once fertilized, females release planula larvae, which, seeking a solid base, often anchor to substrates like mangrove roots. Over time, these larvae morph into polyps, resembling tiny sea anemones. These polyps, under the right conditions, undergo a fascinating process called strobilation. From one polyp, multiple jellyfish bud off, introducing new medusae to the aquatic realm.

Impact on Humans and Environment

When in bloom, the density of these jellyfish can soar to 30 individuals per square meter. Such dense gatherings can deplete water’s oxygen levels, reshuffling the aquatic food chain. Their dominance can outcompete other species and consume a significant portion of the available zooplankton. Swimmers, too, need to be cautious. A brush against their tentacles can lead to stings, which can range from being a mere annoyance to causing more pronounced discomfort.

 WTF fun facts

Source: “Upside-down Jellyfish” — Australian Museum

WTF Fun Fact 13580 – Deadliest Heart Attacks on Monday

Heart attacks on Monday seem to be a recurring theme. Recent findings suggest that, for some reason, people are more likely to face life-threatening heart issues as the new week kicks off. Let’s dive into what the research says and why this might be happening.

The Monday Mystery

A big conference in Manchester brought some surprising news to the table. Medical experts from Belfast and Ireland checked out hospital data for over 10,000 patients from 2013 to 2018. They found that a very serious type of heart attack, called STEMI, was more common on Mondays. Basically, STEMI is when a main blood vessel to the heart gets fully blocked. If doctors don’t treat it fast, it can be deadly.

Now, every year, around 30,000 people in the UK end up in the hospital because of STEMI. They get a quick check and usually undergo a procedure to unblock the vessel and get blood pumping properly again. What’s odd is that this research found Mondays had a 13% higher chance of people coming in with this problem. Even Sundays had a bit of a bump.

But why Mondays? Well, that’s the big question. Some older studies think our body’s natural sleep-wake cycle might play a role. But the full picture isn’t clear yet.

Doctors Weigh in on Heart Attacks on Monday

Dr. Jack Laffan, who headed the study, admits that this Monday trend is curious. He thinks several factors might be at play. One idea is our body’s natural clock. Our sleep patterns, wake-up times, and daily habits could influence when heart attacks happen.

Meanwhile, another expert, Professor Sir Nilesh Samani, stresses the importance of these findings. Heart attacks are always a medical emergency, no matter the day. He believes that the more we learn about the “Monday effect”, the better doctors can prepare and save more lives.

In the end, while Mondays might have a higher rate of heart attacks, every day is important when it comes to heart health. Whether it’s stress from starting a new work week or something else entirely, the research continues. The goal is always to protect our hearts and understand what might put them at risk.

 WTF fun facts

Source: “Why are serious heart attacks more likely on a Monday?” — British Heart Foundation

WTF Fun Fact 13579 – The Amazing, Changing Octopus Brain

The octopus brain is unlike anything we know. Octopuses rank among Earth’s most intelligent creatures. They boast a neuron count similar to dogs. But, over half of these neurons reside in their eight arms, not in a central brain. This neural setup sets them apart.

Now, researchers have discovered something even more peculiar. Octopuses can rewrite their RNA in reaction to temperature shifts. This action is akin to humans adjusting outfits according to the weather.

By editing their RNA, octopuses change how their cells produce proteins. This flexibility may help them cope with seasonal temperature shifts. Joshua Rosenthal, a lead biologist, calls this ability “extraordinary.”

RNA Editing: A Temporary Genetic Makeover

Humans undergo RNA editing, but it’s limited. It affects protein production in fewer than 3% of our genes. In contrast, advanced cephalopods can adjust most neural proteins through RNA editing. Motivated by this disparity, scientists sought the driving forces behind cephalopod RNA editing. They prioritized temperature, given its frequent fluctuations.

They gathered California two-spot octopuses, familiarizing them with varying water temperatures. Weeks later, they probed 60,000 RNA editing sites in the octopus genomes. A third of these sites showed changes occurring astonishingly fast, from mere hours to a few days. Eli Eisenberg, another lead researcher, found the widespread changes unexpected.

Most of these changes manifested in cold conditions. They influenced proteins crucial for cell membrane health, neuron signal transmission, controlled cell death, and neuron calcium binding. Although these protein variants arise from RNA editing, Eisenberg admits that the complete adaptive benefits remain elusive.

Wild octopuses from both summer and winter displayed similar RNA changes. This solidified the belief in temperature as a major influencer in RNA editing for octopuses.

Protective RNA Editing for the Octopus Brain

Octopuses can’t control their body temperature like mammals can. Thus, scientists theorize that RNA editing acts as a protective mechanism against temperature shifts. Eisenberg elaborates that octopuses might opt for protein versions optimal for prevailing conditions. Such adaptive behavior is absent in mammals.

Heather Hundley, an external biologist, praised this groundbreaking study. She highlighted its potential in reshaping our understanding of RNA editing as a dynamic regulatory process in response to environmental changes.

The future beckons more investigations. The team plans to examine other potential RNA editing triggers in the octopus brain. Factors like pH, oxygen levels, or even social interactions might hold further insights. With each revelation, the octopus brain continues to astound the scientific community.

 WTF fun facts

Source: “Octopuses Redesign Their Own Brain When They Get Chilly”‘ — Scientific American

WTF Fun Fact 13578 – Presidential DNA in Space

What happens to a deceased person’s DNA in space? We don’t yet know, but one company is finding out.

In an unprecedented melding of history, space exploration, and pop culture, DNA samples of four iconic American Presidents are set to take an out-of-this-world journey. In a move that combines reverence for national leadership and a nod to entertainment legends, Texas-based space burial company, Celestis, is gearing up to launch an astonishing payload.

Sending Founding Fathers’ DNA in Space

Determined to make history, Celestis has chosen the DNA samples of four of the most recognized U.S. Presidents: George Washington, Dwight D. Eisenhower, John F. Kennedy, and Ronald Reagan. These samples will be part of Celestis’ deep space remembrance Enterprise Flight. This flight’s announcement fittingly occurred on Presidents’ Day, honoring some of the nation’s foremost leaders. The mission is groundbreaking, marking the first instance any U.S. president is symbolically dispatched to space.

Joining Trekkies on an Epic Journey

These presidential DNA samples are not traveling alone. Sharing their celestial voyage are the remains and DNA samples of some of the most beloved names from the “Star Trek” franchise. Among them are Nichelle Nichols, DeForest Kelley, and the show’s creator, Gene Roddenberry, along with his wife, Majel Barrett Roddenberry.

The list doesn’t end there. James “Scotty” Doohan, renowned for his role as the “Star Trek” engineer, and Douglas Trumbull, the visual effects genius behind classics like “2001: A Space Odyssey” and “Close Encounters of the Third Kind”, will also join the journey.

Interestingly, the hair samples, which are the DNA sources for these presidents, are from the collection of Louis Mushro. A global celebrity in the realm of hair collection and appraisal, Mushro’s reputation is unparalleled. Before his demise in 2014, he ensured these samples were stored meticulously in a climate-controlled facility. They now embark on a mission of historic significance, thanks to an anonymous donor who gifted these samples to Celestis.

DNA in Space, Beyond the Earth-Moon System

According to Charles M. Chafer, Co-Founder & CEO of Celestis, Inc., their “Enterprise Flight is historic by any standard.” Celestis envisions an ambitious future: assisting human expansion throughout the solar system. By sending the DNA of such significant figures into space, they aim to pave the way for future human missions.

This Enterprise Flight will transcend the Earth-moon system, traveling between 93 to 186 million miles into deep space. It will carry over 200 flight capsules, each loaded with cremated ash remains, DNA, personal messages, and greetings from global clients.

The journey of these capsules isn’t just about remembrance. The Vulcan Centaur rocket, responsible for transporting these capsules, has a primary mission: aiding the Pittsburgh aerospace company Astrobotic. This assistance involves directing their Peregrine lunar lander toward the moon’s surface. Following this, the Vulcan Centaur’s upper stage will delve deeper into space. Its destination? An orbit around the sun, where it will establish humanity’s furthest outpost, the Enterprise Station.

Adding to the mission’s allure is its partnership with Amazon. The 2023 Enterprise Flight will carry two prototype satellites, set to be part of Amazon’s internet constellation, Project Kuiper. As space exploration moves forward, collaborations like these symbolize the fusion of commerce, innovation, and remembrance.

 WTF fun facts

Source: “DNA from 4 American presidents will launch to deep space” — Space.com

WTF Fun Fact 13576 – Mark Twain and Halley’s Comet

There’s a strange fact about Mark Twain and Halley’s Comet that most people don’t know.

In 1835, as Halley’s Comet graced the Earth’s skies, an event occurred that would link it forever with a literary legend. On November 30th of that year, Samuel Clemens, better known as Mark Twain, was born. This bright comet, which visits Earth roughly every 76 years, unknowingly set a cosmic appointment with Twain.

Halley’s Comet: A Brief Overview

Edmond Halley, an 18th-century astronomer, earned the honor of having this comet bear his name after he predicted its return in 1758. Ancient civilizations, from the Chinese to the Babylonians, had recorded their appearances for millennia. Its consistent visits have made it one of the most recognized celestial bodies in human history.

Mark Twain and Halley’s Comet: A Remarkable Prediction

As Twain aged and learned of the comet’s appearance during his birth year, he made a statement that would echo in the annals of literary history. In 1909, he declared, “I came in with Halley’s Comet in 1835. It is coming again next year, and I expect to go out with it.” Whether he said it in jest or with genuine foresight, the world would soon find out.

Mark Twain died on April 21, 1910. On the previous day, Halley’s Comet had made its closest approach to Earth. The comet, consistent with its 76-year schedule, had kept its appointment. So had Twain, aligning his exit from this world with the celestial body’s visit.

Mark Twain and Halley’s Comet

The periodic appearance and retreat of Halley’s Comet mirrors the fleeting nature of human life. In the comet’s brief brilliance, we can perhaps see a metaphor for our own transient existence. Twain, a master of insight and wit, often explored mortality and the impermanence of life in his works. The comet served as a grand, celestial parallel to these themes.

Beyond the Stars: Twain’s Enduring Legacy

Twain’s stories and societal critiques have left an indelible mark on American literature. Titles like “The Adventures of Tom Sawyer” and “The Adventures of Huckleberry Finn” continue to challenge and entertain readers, highlighting issues such as racial inequality. While the comet’s timing added a layer of mystique to his narrative, Twain’s true impact lies in his enduring words.

 WTF fun facts

Source: “Halley’s Comet – The fascinating connection between Mark Twain and Davy Crockett” — Brian A. Crandall

WTF Fun Fact 13554 – The Most Dangerous Jobs

When we think of the most dangerous jobs, our minds often drift to high-action roles, like police officers or firefighters. However, statistical data paints a different, more nuanced picture.

It’s not uncommon to hear discussions about the perils of patrolling the streets. However, data from the U.S. Bureau of Labor Statistics (BLS) sheds light on the occupations that statistically face higher risks daily, and they might not be the ones you’re thinking of.

The Real Most Dangerous Jobs in America

Various blue-collar roles often go unnoticed in their level of peril.

For example, mechanics – both supervisors and those specializing in heavy vehicles – face significant challenges in their workplaces. Heavy vehicle mechanics, dealing with substantial machinery like bulldozers and tractors, confront transportation incidents frequently, with many hazards stemming from the machines they’re entrusted to service.

It’s not just the machinery-oriented jobs that bear these dangers. Those who maintain our public and private spaces, grounds maintenance workers, also navigate risks. Their tasks might appear benign – manicuring lawns, trimming trees, and tending to parks – but their fatal injury rate is on par with heavy vehicle mechanics. Surprisingly, transportation incidents are their predominant threat.

Moreover, general maintenance workers and construction laborers experience considerable hazards. Accidental contact with objects, equipment malfunctions, and falls from significant heights are everyday threats they navigate, often without the same public acknowledgment of their risks.

Perspective on Peril

When juxtaposed with police officers’ fatal injury rate of 14 per 100,000 workers, it becomes evident that several other occupations face equal or even greater threats. The BLS data brings forth an intriguing perspective: while the dangers of law enforcement are well-publicized and recognized, many other workers face similar or heightened risks in relative obscurity.

So the real most dangerous jobs?

  • Logging workers
  • Airline pilot and flight engineers
  • Derrick operators in oil and gas
  • Roofers
  • Garbage collectors
  • Iron workers
  • Delivery drivers
  • Farmers

Even crossing guards rank higher on the deadly jobs list than police officers, which come in at #22. And it’s not that having the 22nd most dangerous job isn’t dangerous – it certainly is. The issue is we don’t often appreciate the extent to which the people who collect our trash or deliver our packages also put their lives on the line every day when they head to work.

Behind the Numbers

The BLS’s Census of Fatal Occupational Injuries is a treasure trove for understanding the nuances of workplace fatalities. This analysis spotlighted 263 professions, each boasting a workforce of at least 50,000 individuals.

To determine the fatal injury rate, fatalities were compared to the number of roles in that occupation. The average from 2014-2018 was then calculated to minimize the influence of yearly variations.

Information regarding the predominant causes of fatal accidents was extracted from this comprehensive census. Simultaneously, salary insights came from the Occupational Employment Statistics Survey.

Recognizing the latent dangers in these professions accentuates the importance of proper safety training and practices. It’s important to acknowledge the sacrifices and challenges faced by these unsung heroes in our everyday lives.

So, the next time you see a mechanic working under a vehicle, a roofer working on a house, or your local trash collector, take a moment to appreciate their dedication and the risks they take daily.

 WTF fun facts

Source: “Top 25 most dangerous jobs in the United States” — Industrial Safety and Hygiene News

WTF Fun Fact 13552 – Blue Whale’s Heartbeat

A blue whale’s heartbeat can be detected from an astonishing distance of two miles away!

The Mighty Pulse of the Blue Whale

The blue whale, known as Balaenoptera musculus, reigns as the largest creature on our planet. Its size surpasses even the mightiest dinosaurs. One of its awe-inspiring attributes? Under the right conditions, you can detect a blue whale’s heartbeat from an incredible distance of two miles away.

The Heart: Size and Scale

First, consider the immense size of the blue whale’s heart. It weighs around 400 pounds (181 kilograms) and is about as large as a small car. This massive organ pumps blood through a creature that can be up to 100 feet long and weigh as much as 200 tons. Each beat sends gallons of blood throughout its enormous body, delivering oxygen to muscles and vital organs.

Mechanics of Each Beat

The rate of the blue whale’s heartbeat also intrigues researchers. When a blue whale surfaces, its heart beats eight to ten times per minute. Yet, during a deep dive, this rate can plummet to a mere two beats per minute. This drop in heartbeat allows the whale to conserve oxygen and stay underwater for durations that can reach 90 minutes.

Each heartbeat exerts tremendous force. As the heart contracts, it generates strong pressure waves. Given the power and size behind each beat, these waves can travel for miles.

Tools of Detection: Hydrophones

Researchers use hydrophones, underwater microphones, to tap into the ocean’s soundscape. These devices pick up a range of sounds, from the melodies of humpback whales to the conversations of dolphins and the distant rumblings of underwater earthquakes. Amid these myriad sounds, the rhythmic thud of the blue whale’s heartbeat offers valuable information.

Water conditions, including temperature, salinity, and depth, affect how sound travels underwater. However, the unique rhythm of the blue whale’s heartbeat stands out, even in this busy sonic environment.

Heartbeat and Conservation

Studying the blue whale’s heartbeat has implications for conservation. Tracking the heart rate can give insights into the health of the species. Human activities, such as shipping or underwater drilling, can stress whales and alter their heart rates. By listening to the ocean’s pulse, scientists can determine the effects of human-caused noise on these marine giants and adjust conservation strategies accordingly.

Additionally, by understanding the blue whale’s heart, we can explore the limits of size in the animal kingdom. This knowledge might explain the maximum potential size of living organisms and provide insights into the evolution of marine giants.

 WTF fun facts

Source: “5 things you never knew about a whale’s heart” — Cold Spring Harbor Whaling Museum