WTF Fun Fact 13591 – The Grandmother Hypothesis

Have you heard of the grandmother hypothesis? Basically, it means grandma was right about washing behind your ears!

When it comes to maintaining skin health, certain regions, like behind the ears and between the toes, often get overlooked. Research by the George Washington University reveals why paying attention to these areas is essential. The skin microbiome, which refers to the collection of microbes residing on our skin, has shown variation in composition across different skin regions, be it dry, moist, or oily.

Exploring the Grandmother Hypothesis

The GW Computational Biology Institute set out to explore the widely accepted but scientifically unproven “Grandmother Hypothesis.” Keith Crandall, Director of the Computational Biology Institute, recalls the age-old advice from grandmothers: always scrub behind the ears, between the toes, and inside the belly button. But why? The belief is that these less frequently washed areas might house different bacterial compositions compared to more regularly scrubbed parts of the body.

To put this to the test, Marcos Pérez-Losada and Keith Crandall designed a unique genomics course, involving 129 graduate and undergraduate students. These students collected data by swabbing areas like behind their ears, between their toes, and their navels. For comparison, samples were also taken from drier regions such as calves and forearms.

Revealing Differences in Microbial Diversity

The results were enlightening. Forearms and calves, often cleaned more diligently during baths, displayed a broader and presumably healthier range of microbes. This is compared to hotspots like behind the ears and between the toes. A balanced skin microbiome is essential for skin health. A dominance of harmful microbes can disrupt this balance, potentially leading to skin conditions such as eczema or acne.

The study’s outcomes suggest that cleaning habits indeed impact the microbial population on the skin, further influencing its health. Thus, the age-old advice from our grandparents holds some truth after all!

Implications of the Grandmother Hypothesis

The research carried out by the GW Computational Biology Institute provides significant insights into the skin microbiome of healthy adults. It serves as a benchmark for future studies. There is still a long way to go in understanding the intricacies of how the microbial community on our skin impacts our overall health or disease state.

The study titled “Spatial diversity of the skin bacteriome” marked an essential milestone in the field. It sheds light on the diverse bacterial communities residing in different parts of our skin. Published in the renowned journal Frontiers in Microbiology on September 19, it is a stepping stone to further research in this rapidly evolving domain.

In conclusion, paying heed to the lesser-focused regions of our skin, as our ancestors advised, might be the key to ensuring a balanced and healthy skin microbiome. So next time you shower, remember to scrub those often-neglected areas!

 WTF fun facts

Source: “Skin behind the ears and between the toes can host a collection of unhealthy microbes” — ScienceDaily

WTF Fun Fact 13590 – Choosing Ignorance

When faced with moral decisions, many people are choosing ignorance about the repercussions of their actions. Recent studies explore why individuals might select the path of willful ignorance, and the findings are illuminating.

The Study of Choosing Ignorance

What makes a person deliberately overlook the consequences of their actions? According to the American Psychological Association, 40% of individuals, when given the choice, will opt for ignorance. More intriguingly, they often do so to give themselves leeway to act selfishly.

As lead author Linh Vu, MS, from the University of Amsterdam, describes it: “Everyday scenarios frequently show people choosing ignorance. A classic instance is when customers disregard the ethically questionable origins of products they purchase.” The pressing question that Vu and her colleagues grappled with was the extent and implications of such intentional ignorance.

The findings stem from a meta-analysis of 22 individual studies, encompassing a whopping 6,531 participants. These studies either took place in a research lab setting or online. A majority of these research initiatives followed a design where participants received information about the ramifications of their decisions, while others had the discretion to know or not.

Consider this example: Participants had to select between a $5 reward and a $6 reward. Choosing the former meant an anonymous person (or charity) would receive the same amount. If they opted for the latter, the anonymous entity would get a mere dollar. Some participants could decide whether to know the consequences, while others were informed outright.

A consistent finding across these studies? An astounding 40% actively chose ignorance. Furthermore, those who opted not to be informed were significantly less altruistic. There was a 15.6% greater likelihood of individuals showing generosity when they were cognizant of the results of their decisions.

Benevolence or Self-Image?

The research suggests that this inclination towards choosing ignorance could be linked to one’s desire to project a positive self-image. Willful ignorance permits individuals to retain this self-perception, even if they don’t act altruistically.

Study co-author Shaul Shalvi, a behavioral ethics professor at the University of Amsterdam, further shed light on this phenomenon. Individuals who sought to know the consequences were 7% more inclined to show generosity than those automatically provided with information. It indicates genuinely altruistic folks prefer to be in the know about their actions’ aftermath.

Shalvi points out, “A vast portion of altruistic tendencies we notice stems from societal expectations. While many willingly make ethical choices when informed of the outcomes, their motivation isn’t always altruistic. Societal pressure and the urge to perceive oneself positively play a significant role. Since righteous deeds often come with sacrifices, such as time, effort, or money, choosing ignorance becomes a convenient escape.”

However, one limitation to note: all studies under this meta-analysis were conducted in Western Europe or the US, or on platforms like Amazon Mechanical Turk. This hints at the need for more diverse research settings in the future. After all, understanding this behavior in its entirety requires a broader perspective and could provide clues on countering such deliberate oversight.

WTF fun facts

Source: “‘I’d rather not know’: Why we choose ignorance” — ScienceDaily

WTF Fun Fact 13589 – A Voice Test for Diabetes

If you’re scared of needles, you might be interested to know that researchers are investigating a possible voice test for diabetes.

That’s right. A brief recording of your voice could indicate whether or not you have diabetes.

A Voice Test for Diabetes?

A program designed to use no more than 10 seconds of speech has proven capable of identifying the presence of diabetes with remarkable accuracy.

In an experiment conducted by Klick Labs, 267 individuals recorded a short phrase on their smartphones six times a day over a span of two weeks. This group had recently undergone testing for Type 2 diabetes. The aim? To discern any acoustic differences between the voices of those who tested positive and those who didn’t.

By analyzing the participants’ voice prints in conjunction with data like age, sex, height, and weight, an AI model made astonishing predictions. The accuracy rate stood at 86% for men and an even higher 89% for women.

Unraveling the Science Behind Voice Analysis

The question arises: Why does diabetes influence one’s voice? The synthesis of our voice is a multifaceted process that integrates the respiratory system, nervous system, and the larynx. Factors that impact any of these systems can, in turn, alter the voice. While such changes might escape the human ear, computers, with their advanced analytical capacities, can detect them with precision.

Among the vocal attributes studied, pitch and its variation proved to be the most predictive of diabetes. Interestingly, some vocal attributes only enhanced prediction accuracy for one gender. For instance, “perturbation jitter” was a key factor for women, whereas “amplitude perturbation quotient shimmer” was significant for men.

It’s worth noting that prolonged elevated blood sugar can impair peripheral nerves and muscle fibers, leading to voice disorders. Moreover, even temporary elevations in blood glucose can potentially influence vocal cord elasticity, though this theory still awaits validation. Furthermore, emotional factors, such as anxiety and depression—both of which can be associated with diabetes—may further modulate voice characteristics.

Beyond Conventional Diabetes Testing

Jaycee Kaufman, the leading author of the study, emphasized the transformative potential of their findings: “Voice technology can potentially revolutionize the way the medical community screens for diabetes. Traditional detection methods can be cumbersome, both in terms of time and cost. This technology could eliminate these challenges altogether.”

Considering the global surge in diabetes cases, and the complications arising from late diagnoses, the introduction of a non-invasive, rapid testing tool can be a game-changer. The International Diabetes Federation has highlighted that nearly 50% of adults with diabetes remain unaware of their condition. Predictably, this unawareness is most pronounced in nations where healthcare infrastructure is stretched thin. The economic implications are staggering, with undiagnosed diabetes projected to cost an exorbitant $2.1 trillion annually by 2030.

Voice technology, as an alternative to blood sample-based tests, presents a promising avenue for early detection and intervention.

A Healthier Future Using A Voice Test for Diabetes

Buoyed by the success of their study, Klick Labs is planning a larger-scale project. They aim not only to refine the accuracy of their model but also to expand its scope. Their vision extends beyond diabetes detection, as they explore its applicability to conditions like prediabetes and hypertension.

Yan Fossat, co-author of the study, expressed enthusiasm for the innovation: “Voice technology has the potential to usher in a new era in healthcare, positioning itself as a vital digital screening tool that’s both accessible and economical.”

As the study gains traction and the technology evolves, the implications for global health are profound. With the power of voice technology, a world where early, easy, and efficient disease detection is the norm, may not be too far off.

WTF fun facts

Source: “10 Seconds Of Recorded Speech Can Reveal If Someone Has Diabetes” — IFL Science

WTF Fun Fact 13588 – Ants Don’t Have Lungs

Did you know that ants don’t have lungs?

One may wonder how they fuel their high energy and rapid movement. The answer lies, in part, in their unique respiratory system. Unlike larger animals, ants don’t have lungs. Instead, they rely on a network of tiny tubes to breathe. This intricate system is not only fascinating but is also a testament to nature’s adaptability.

Ants Don’t Have Lungs, So How Do They Breathe?

Ants, like other insects, use a system of tubes called tracheae to transport oxygen to their tissues and remove carbon dioxide. These tracheae branch out into finer tubes, spreading throughout the ant’s body and reaching every cell. The tracheae system is like a highly efficient highway network that delivers oxygen straight to where it’s needed.

At the surface, openings called spiracles allow the entry and exit of gases. These spiracles can be found on the ant’s thorax and abdomen. They operate like valves, opening to allow oxygen in and carbon dioxide out, and closing to prevent water loss. This mechanism ensures that ants can regulate their oxygen intake and carbon dioxide release, maintaining an optimal internal environment.

One might wonder how oxygen enters and carbon dioxide exits the tracheae without the pumping mechanism we associate with lungs. The secret here is diffusion. Due to the small size of ants, the distance between the spiracles and the internal cells is minuscule. This allows gases to naturally diffuse in and out based on concentration gradients.

When the oxygen level outside an ant is higher than inside, oxygen molecules move into the tracheae through the spiracles. Conversely, when the carbon dioxide level inside the ant is higher than outside, the gas moves out of the tracheae, again through the spiracles. This passive process eliminates the need for a more complex respiratory organ like lungs.

The tracheal system presents several advantages for ants. First, it’s lightweight. Lungs, with their associated tissues, can be relatively heavy, especially when filled with blood and other fluids. Ants, needing to be agile and quick, benefit from not having this extra weight.

Moreover, the tracheal system provides direct oxygen delivery. In larger animals, oxygen absorbed by the lungs needs to be transported by the circulatory system to reach individual cells. But in ants, the tracheal tubes deliver oxygen straight to the cells, ensuring immediate supply and reducing any delay in oxygen transport.

Ants’ Adaptations for High Activity Levels

Considering the bustling nature of ant colonies and their constant search for food and resources, one might wonder how their simple respiratory system keeps up. Ants have evolved behaviors and physical adaptations to ensure they maintain a constant supply of oxygen.

For instance, ants often move in a coordinated manner, ensuring that they don’t overcrowd a particular area, which could potentially limit the available oxygen. Additionally, their exoskeletons are thin, which further facilitates the efficient diffusion of gases.

Furthermore, some ant species have evolved specialized structures in their tracheal system that allow for more efficient gas exchange, especially when they’re deep within their nests. These adaptations ensure that even in crowded, subterranean environments, ants receive the oxygen they need.

The ant’s respiratory system might be efficient for their size, but this system wouldn’t work for larger organisms. As body size increases, the distance between the external environment and internal cells becomes too great for diffusion alone to be effective. That’s why larger animals, including humans, have evolved complex respiratory systems like lungs, and intricate circulatory systems to transport oxygen to individual cells.

In essence, while the ant’s method of breathing is impressively efficient for its tiny form, nature has found diverse solutions for different species based on their size, habitat, and activity levels. It’s a testament to the adaptability and innovation of evolution.

WTF fun facts

Source: “How do ants breathe?” — BBC Science Focus

WTF Fun Fact 13587 – Ostrich Speed

You’ve heard of horsepower, but how about ostrich speed? It turns out ostriches are actually capable of moving faster than horses!

Native to Africa, ostriches might seem like unlikely sprinters due to their large size and seemingly unwieldy, flightless nature. But their unique anatomy and evolutionary adaptions allow them to move FAST.

The Mechanics of Ostrich Speed

The first thing that might strike you about an ostrich is its legs. They’re long and strong. And they account for a substantial portion of the ostrich’s height, which can reach up to 9 feet. Unlike horses, which have multiple toes with hooves, ostriches stand and run on just two toes. This two-toed design provides a more extended surface area, enabling better traction and speed on the African plains.

Muscle distribution plays a significant role in ostrich speed as well. Ostriches have a higher concentration of fast-twitch muscle fibers in their legs compared to horses. These fibers contract very fast, and they provide the power necessary for rapid sprints. The long tendons in and ostrich’s legs also act like springs. They store and release energy efficiently with each stride.

So, as they run, an ostrich’s stride can stretch up to 15 feet!

Comparative Speeds: Ostriches vs. Horses

While a fast horse can reach speeds of up to 55 mph during a short sprint, it typically averages around 30-40 mph during a more extended run. The ostrich can consistently maintain speeds of 45 mph over longer distances. Moreover, it can reach peak velocities of up to 60 mph in shorter bursts.

This consistency and top speed give the ostrich an edge in a hypothetical race against its four-legged counterpart.

But it’s not just about speed. Ostriches also have amazing stamina. They can maintain their swift pace for extended periods, allowing them to traverse the vast African landscapes in search of food and water.

A horse might tire after a long gallop, but the ostrich’s energy-efficient anatomy lets it cover vast distances without wearing out. This endurance is especially crucial in their native habitat since resources can be sparse, and threats from predators are always around.

Another fascinating aspect of the ostrich’s ability to maintain high speeds over time is its temperature regulation mechanism. Ostriches have a unique system of blood vessels in their legs. These help dissipate heat. So, as they run, the large surface area of their legs allows for more efficient cooling and prevents them from overheating.

Evolution’s Role in Ostrich Speed

The ostrich’s need for speed didn’t just arise out of nowhere. Over millions of years, evolution fine-tuned this bird for its specific environment. The plains of Africa, with its predators and the need to roam large areas for food, necessitated both speed and stamina. In response to these pressures, the ostrich developed its remarkable running capabilities.

Similarly, the horse’s evolution was shaped by its environment and survival needs. While they, too, evolved to be fast runners, their evolutionary trajectory emphasized different aspects of speed, maneuverability, and strength suitable for their respective ecosystems.

WTF fun facts

Source: “Can Ostriches Run Faster than Horses?” — HorseRidingHQ

WTF Fun Fact 13584 – Owls Don’t Have Eyeballs

Owls don’t have eyeballs. At least not in the traditional sense.

If Owls Don’t Have Eyeballs, What Do They Have?

Owls possess elongated, tubular eyes that are fixed in their sockets. This unique design provides them with exceptional vision, especially in low light.

The reason behind this peculiar eye shape is all about maximizing light intake and enhancing their depth perception. With their long, tube-shaped eyes, owls can collect and process a significant amount of light. This feature is vital for a creature that does most of its hunting during twilight hours or in the dark of the night.

Now, since owls can’t move their eyes within their sockets like humans can, they’ve developed an incredible neck flexibility. An owl can rotate its head up to 270 degrees in either direction. Imagine turning your head almost entirely backward! This ability allows them to have a wide field of view without needing to move their bodies.

The Trade-Off

There’s always a trade-off in nature. While owls can see far and wide with their tubular eyes, their peripheral vision is limited. That’s where their keen sense of hearing comes into play. Together with their exceptional eyesight, their auditory skills make them formidable nocturnal hunters.

An owl’s retina has an abundance of rod cells, which are sensitive to light and movement. These cells help the owl detect even the slightest movement of prey in dimly lit conditions. And while they have fewer cone cells, responsible for color vision, recent studies suggest that owls can see some colors, particularly blue.

Given the size and prominence of an owl’s eyes, protecting them is crucial. Owls have a third eyelid known as a nictitating membrane. This translucent lid sweeps across the eye horizontally, acting as a windshield wiper to remove dust and debris. It also helps in keeping their eyes moist.

The unique eye structure of owls has fascinated scientists and researchers for years. By studying how owls see, we gain insights into improving visual technologies, especially those required to function in low-light conditions.

WTF fun facts

Source: “Do Owls Have Eyeballs: The Unique Vision And Skills Of Owls” — DiscoveryNatures

WTF Fun Fact 13583 – Upside-Down Jellyfish

Imagine wandering through a tranquil lagoon and spotting a group of upside-down jellyfish resting with their bell against the seafloor.

Unlike most of their free-swimming counterparts, these jellyfish are often found lounging, with their oral arms extending towards the sun. But why such an odd pose?

Why are upside-down jellyfish upside-down?

The upside-down posture serves a dual purpose. Firstly, this position facilitates the pulsing movement of their bell, pushing water over the jellyfish’s body, ensuring a steady flow of oxygen and food. Secondly, the upward-facing tentacles benefit from the sunlight, which assists the photosynthetic algae, zooxanthellae, residing in the jellyfish tissue. This unique position allows them to gain energy from both their food and the sun!

Upside-down jellyfish love to hang out in the sunlit, shallow waters of coastal regions, especially around areas bustling with mangroves. Sunlight plays a pivotal role in their survival as it powers the photosynthetic algae inside them. Think of them like underwater solar panels!

In Australia, they are predominantly spotted in the tropical territories, ranging from Yampi Sound in Western Australia to Queensland’s Gold Coast. However, there’s a twist: these jellies have made surprise appearances in temperate coastal lakes of New South Wales, and even in the unusually warm waters around a powerplant in Adelaide.

The diet and life cycle of the upside-down jellyfish

When it comes to diet, these jellyfish are both photosynthetic and predatory. The zooxanthellae within provides up to a whopping 90% of their nutritional needs through photosynthesis, while the remaining 10% is sourced from the ocean buffet of zooplankton. They employ a two-step tactic for this: first, they stun their prey using their nematocysts or stinging cells, and then deploy a mucus to ensnare and consume the tiny creatures.

Although equipped with the ability to swim traditionally by pulsing their bell, these jellies prefer the floor. Their stationary, upside-down lifestyle may seem lazy, but it is a strategic adaptation that allows them to harness energy effectively from the sun through their symbiotic algae.

The lifecycle of these jellies is a captivating dance of nature. After males release their reproductive cells, these combine with the female’s eggs in the open water. Once fertilized, females release planula larvae, which, seeking a solid base, often anchor to substrates like mangrove roots. Over time, these larvae morph into polyps, resembling tiny sea anemones. These polyps, under the right conditions, undergo a fascinating process called strobilation. From one polyp, multiple jellyfish bud off, introducing new medusae to the aquatic realm.

Impact on Humans and Environment

When in bloom, the density of these jellyfish can soar to 30 individuals per square meter. Such dense gatherings can deplete water’s oxygen levels, reshuffling the aquatic food chain. Their dominance can outcompete other species and consume a significant portion of the available zooplankton. Swimmers, too, need to be cautious. A brush against their tentacles can lead to stings, which can range from being a mere annoyance to causing more pronounced discomfort.

WTF fun facts

Source: “Upside-down Jellyfish” — Australian Museum

WTF Fun Fact 13578 – Presidential DNA in Space

What happens to a deceased person’s DNA in space? We don’t yet know, but one company is finding out.

In an unprecedented melding of history, space exploration, and pop culture, DNA samples of four iconic American Presidents are set to take an out-of-this-world journey. In a move that combines reverence for national leadership and a nod to entertainment legends, Texas-based space burial company, Celestis, is gearing up to launch an astonishing payload.

Sending Founding Fathers’ DNA in Space

Determined to make history, Celestis has chosen the DNA samples of four of the most recognized U.S. Presidents: George Washington, Dwight D. Eisenhower, John F. Kennedy, and Ronald Reagan. These samples will be part of Celestis’ deep space remembrance Enterprise Flight. This flight’s announcement fittingly occurred on Presidents’ Day, honoring some of the nation’s foremost leaders. The mission is groundbreaking, marking the first instance any U.S. president is symbolically dispatched to space.

Joining Trekkies on an Epic Journey

These presidential DNA samples are not traveling alone. Sharing their celestial voyage are the remains and DNA samples of some of the most beloved names from the “Star Trek” franchise. Among them are Nichelle Nichols, DeForest Kelley, and the show’s creator, Gene Roddenberry, along with his wife, Majel Barrett Roddenberry.

The list doesn’t end there. James “Scotty” Doohan, renowned for his role as the “Star Trek” engineer, and Douglas Trumbull, the visual effects genius behind classics like “2001: A Space Odyssey” and “Close Encounters of the Third Kind”, will also join the journey.

Interestingly, the hair samples, which are the DNA sources for these presidents, are from the collection of Louis Mushro. A global celebrity in the realm of hair collection and appraisal, Mushro’s reputation is unparalleled. Before his demise in 2014, he ensured these samples were stored meticulously in a climate-controlled facility. They now embark on a mission of historic significance, thanks to an anonymous donor who gifted these samples to Celestis.

DNA in Space, Beyond the Earth-Moon System

According to Charles M. Chafer, Co-Founder & CEO of Celestis, Inc., their “Enterprise Flight is historic by any standard.” Celestis envisions an ambitious future: assisting human expansion throughout the solar system. By sending the DNA of such significant figures into space, they aim to pave the way for future human missions.

This Enterprise Flight will transcend the Earth-moon system, traveling between 93 to 186 million miles into deep space. It will carry over 200 flight capsules, each loaded with cremated ash remains, DNA, personal messages, and greetings from global clients.

The journey of these capsules isn’t just about remembrance. The Vulcan Centaur rocket, responsible for transporting these capsules, has a primary mission: aiding the Pittsburgh aerospace company Astrobotic. This assistance involves directing their Peregrine lunar lander toward the moon’s surface. Following this, the Vulcan Centaur’s upper stage will delve deeper into space. Its destination? An orbit around the sun, where it will establish humanity’s furthest outpost, the Enterprise Station.

Adding to the mission’s allure is its partnership with Amazon. The 2023 Enterprise Flight will carry two prototype satellites, set to be part of Amazon’s internet constellation, Project Kuiper. As space exploration moves forward, collaborations like these symbolize the fusion of commerce, innovation, and remembrance.

WTF fun facts

Source: “DNA from 4 American presidents will launch to deep space” — Space.com

WTF Fun Fact 13577 – Man Wins Lottery 20 Times

You might marvel at the luck of the gentleman behind those “man wins lottery 20 times” headlines. But it’s a little trickier than it sounds.

A Leap of Faith on Lucky Numbers

Fekru Hirpo’s choice of numbers, 2-5-2-7, wasn’t a common strategy. Usually, the top prize for the Pick 4 game in Virginia is $5,000. However, in a unique twist of events, Hirpo didn’t simply play his numbers on a single ticket. He purchased 20 identical lottery tickets, all bearing the same four numbers. By doing so, he exponentially increased his chances of multiplying his potential jackpot.

When the draw took place on April 5, Hirpo’s gamble paid off handsomely. The seemingly innocuous numbers were declared the winners, turning what would have been a $5,000 win on a single ticket to an impressive haul of $100,000 for Hirpo. But what made him adopt this unprecedented strategy?

According to a news release, Hirpo himself confessed to lottery officials that he doesn’t usually buy multiple tickets with the same numbers. This time, however, intuition nudged him in that direction. “Something just told him to do it,” the release stated.

A Glimpse at the Odds

For those wondering about the odds, the Virginia Lottery sheds some light. The chances of Hirpo’s specific number combination emerging victorious stood at a staggering one in 10,000. So, despite the long odds, Hirpo’s trust in his numbers and the unique strategy of buying 20 identical tickets was nothing short of a masterstroke.

He purchased his tickets from a Four Mile Run Shell in Arlington, which will likely now gain some attention from other lottery hopefuls.

Fekru Hirpo isn’t the first individual to harness the power of repeating numbers in a lottery game. Not too long ago, a woman from Boca Raton, Florida, employed a similar strategy. She decided to play the same numbers on two Mega Millions tickets. As luck would have it, both her tickets matched all five white balls, resulting in a win. While she didn’t get the Mega Ball, her dual wins netted her a whopping total of $4 million.

The Future with His Fortune as Man Wins Lottery 20 Times

As for Hirpo’s plans for his newfound wealth? He remains tight-lipped. He’s indicated no immediate plans for his winnings. Whether he decides to invest, indulge in a luxury, or maybe just buy more lottery tickets, one thing is clear: his faith in his numbers and his audacious strategy will be talked about for a long time.

WTF fun facts

Source: “Virginia man wins $100,000 after playing same numbers on 20 lottery tickets” — FOX 5 San Diego