WTF Fun Fact 13619 – Jacobean Space Travel

Over three centuries before space travel to the Moon’s surface, England was the site of a little-known, audacious space proposal. The architect of this early space program was Dr. John Wilkins, a 17th-century scientist and theologian. Wilkins, also Oliver Cromwell’s brother-in-law, dreamed of a lunar voyage, crafting plans for a spacecraft propelled by an extraordinary blend of wings, springs, and gunpowder.

Wilkins’ Revolutionary Concept

In 1640, at the young age of 26, Wilkins penned a meticulous description of the machinery necessary for interstellar communication and even commerce with extraterrestrial beings. His proposal marked the first earnest contemplation of space flight, grounded in the era’s most credible scientific documentation.

Wilkins’ era, as delineated by Professor Allan Chapman of Oxford University, was a golden period of scientific revelation. This era rested between the astronomical breakthroughs of Galileo and Copernicus, who unveiled a universe with potentially habitable worlds, and the subsequent realization of the vacuum in space.

Wilkins hypothesized that Earth’s gravitational and magnetic influence spanned only 20 miles upward. Beyond this boundary, he posited, space travel to the Moon would be feasible. His vision was fueled by the era’s spirit of exploration, mirroring the terrestrial voyages of renowned explorers like Francis Drake and Walter Raleigh.

Divine Space Travel

Wilkins, balancing his scientific pursuits with theological insights, argued from a divine perspective. He believed that if God created other worlds, it was within divine providence to inhabit them. His design for a ‘flying chariot’ was a blend of clockwork, spring mechanisms, feather-coated wings, and gunpowder boosters – an embodiment of ingenuity and ambition.

However, by the 1660s, Wilkins’ theory began unraveling. Scientists like Robert Boyle and Robert Hooke demonstrated the vacuum of space, contradicting Wilkins’ assumptions. Wilkins also later understood the distinction between magnetism and gravity, realizing the impracticability of his ‘sphere of magnetic virtue.’

Wilkins’ notions of space travel also included some unconventional beliefs, like the reduced need for food in space. He reasoned that gravity’s pull on Earth necessitated food consumption to replenish the constantly emptying stomachs, a premise that would not apply in the vacuum of space.

Jacobean Space Travel, Grounded

Wilkins’ theories, while never tested, represented a remarkable leap in thinking. His vision, though grounded by later scientific revelations, paved the way for future explorations and opened a dialogue about space travel’s possibilities.

This early foray into space exploration, termed by Professor Chapman as the ‘Jacobean Space Programme,’ laid the foundational ideas that would much later catapult humans into space. Wilkins’ pioneering spirit, albeit based on flawed premises, showcased the boundless curiosity and ambition that drive human endeavors beyond Earth’s confines.

 WTF fun facts

Source: “Cromwell’s moonshot: how one Jacobean scientist tried to kick off the space race” — The Independent

WTF Fun Fact 13616 – Belly Flop Science

In a splash of scientific curiosity, researchers from Brown University have dived into the mechanics of the belly flop. They’ve emerged with insights that could ripple through the field of marine engineering. Their research didn’t just skim the surface. The air-to-water impact dynamics resonate beyond the poolside into naval design and safety.

The Sting of Impact: A Fluid Problem

Assistant Professor Daniel Harris explained the painful truth behind the belly flop’s notorious smack. The sudden halt of a body moving from air to still water creates a formidable reaction force. This results in the body’s shockingly painful reception. This resistance, familiar to any brave soul attempting a belly flop, also poses serious considerations for naval engineering, where structures frequently endure similar high-impact forces.

The research team conducted experiments that replicated the belly flop using a blunt cylinder that vibrated upon impact. Previous studies have often focused on rigid bodies hitting the water. But Harris’s team explored the effects when the object is flexible, allowing for shape change or deformation under force.

Springing into Safer Belly Flop Landings

The researchers attached a soft “nose” to their impactor, buffered by a system of springs designed to soften the blow. It works much like a car’s suspension system. The assumption was that a more flexible system would distribute the impact over a longer period. This would reduce the maximum force felt during the splashdown.

However, their findings defied expectations. Instead of consistently cushioning the blow, the flexible system sometimes intensified the impact force. The culprit? The springs themselves. If not perfectly tuned, the springs’ softness could lead to increased vibrations, adding to the slamming force rather than mitigating it.

The key to a less painful impact lies in the delicate balance of the springs’ stiffness and the height from which the object is dropped. The springs must be just soft enough to absorb the impact gently without causing additional rapid oscillations.

The experiments, while causing a few wet lab coats, have paved the way for innovative approaches to entering water smoothly. Taking cues from nature, the researchers are now exploring how diving birds maneuver to lessen the blow of water entry. Their aim is to design a robotic impactor that mimics these biological techniques for blunt objects.

Implications Beyond the Belly Flop

This study, supported by the Office of Naval Research and Naval Undersea Warfare Center, has far-reaching implications. By understanding the vibrational interplay between structure flexibility and impact forces, engineers can develop safer, more resilient marine vessels and structures. They’ve effectively turned the dreaded belly flop into a lesson in sophisticated design and safety.

The research not only offers a recipe for less painful pool antics but equips marine engineers with the knowledge to better navigate air-to-water transitions.

 WTF fun facts

Source: “Want the secret to less painful belly flops? These researchers have the answer” — ScienceDaily

WTF Fun Fact 13615 – Mars’ Green Glow

Scientists at the University of Liège have captured the first sight of Mars’ green glow.

Did you know Mars emits a glow in the visible range during the night? It was a phenomenon never before seen until now. The discovery by the University of Liège’s scientists offers new insights into the dynamics of the Red Planet’s upper atmosphere and its seasonal variations.

Mars’ Green Glow

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

A Bright Future for Martian Research

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

The Glow of Martian Nights

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

Understanding Mars’ Green Glow and Atmosphere Dynamics

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

 WTF fun facts

Source: “Glow in the visible range detected for the first time in the Martian night” — ScienceaDaily

WTF Fun Fact 13614 – Chimp Warfare

University of Cambridge scientists have uncovered that chimpanzees, much like humans, use strategic high ground for reconnaissance on rival groups during “chimp warfare.” This discovery took place in the West African forests of Côte d’Ivoire. It showcases our closest evolutionary relatives employing a warfare tactic previously thought to be uniquely human.

Chimp Warfare from the Treetops

During a comprehensive three-year study, researchers monitored two neighboring groups of chimpanzees. Their movement patterns revealed a striking preference for elevated terrain when approaching the shared border zone where skirmishes could occur. Researchers noted that the chimpanzees were twice as likely to climb hills en route to this contested area compared to when they ventured within their territory. This suggests a calculated use of the landscape for strategic advantage.

At these vantage points, the primates demonstrated a notable change in behavior. Rather than engaging in their typical noisy foraging or eating, they opted for quiet rest. This behavior allowed them to listen for distant sounds of potential rivals. It also let them make informed decisions about advancing into enemy territory while minimizing the risk of direct conflict.

Strategic Warfare Among Non-Human Primates

The study’s lead author, Dr. Sylvain Lemoine, emphasized the significance of this behavior. “The strategic use of landscape for territorial control reflects a cognitive complexity in chimpanzees that mirrors human war-like strategies,” he explained. This finding suggests that such tactical behavior may have been a part of our evolutionary history. It’s traceable back to the proto-warfare of prehistoric hunter-gatherer societies.

Over the course of their research, the team amassed more than 21,000 hours of tracking data from 58 chimpanzees. The study’s significance lies in its contribution to understanding chimpanzee behavior and implications for evolutionary biology and anthropology.

The study conducted at the Taï Chimpanzee Project indicates that chimpanzees conduct ‘border patrols’ to establish and protect their territory. These patrols are carried out with precision and coordination, reminiscent of a silent hunt. Inselbergs, or isolated rocky outcrops, frequently served as the chosen points for these reconnaissance activities.

The researchers’ observations included instances where these patrols led to expansions of territory or, in rare cases, violent confrontations. Despite these risks, the primary use of hilltop reconnaissance appears to be the avoidance of direct conflict. Chimpanzees preferring to gather information from a distance and reduce the likelihood of violent encounters.

Insights Into Primate Behavior

The discovery that chimpanzees use tactical reconnaissance is a testament to their intelligence and adaptability. More territory means better access to food and higher chances of successful mating, which, as previous research by Lemoine suggests, leads to larger communities with higher birth rates and reduced rival pressure.

This study provides a fascinating glimpse into the complex social behaviors of chimpanzees, offering evidence that tactical thinking and strategic planning are not solely human traits.

 WTF fun facts

Source: “Chimpanzees use hilltops to conduct reconnaissance on rival groups, study finds” — ScienceDaily

WTF Fun Fact 13613 – First Chimeric Monkey

Researchers have made a monumental stride in primate research by making the first chimeric monkey.

This marks the first successful birth of a chimeric monkey from embryonic stem cell lines. This scientific achievement has profound implications for the fields of genetic engineering, species conservation, and biomedical studies.

Understanding Chimerism in Primates

The study, led by senior author Zhen Liu of the Chinese Academy of Sciences, culminated in the birth of a monkey with cells originating from two distinct embryos. Until now, this feat of chimerism had been achieved only in smaller mammals such as rats and mice. Published in the prestigious journal Cell, the research opens new avenues for understanding pluripotency. That’s the capability of stem cells to differentiate into any cell type—in non-human primates and possibly humans.

The cynomolgus monkeys, commonly used in biomedical research, served as the subjects for this groundbreaking experiment. The researchers established nine stem cell lines from blastocyst embryos and selected a subset of these pluripotent cells to inject into early-stage monkey embryos. This meticulous process led to several pregnancies and the birth of six live monkeys. One of these showcased a substantial level of chimerism.

The Making of a Chimeric Monkey

The researchers tagged the stem cells with green fluorescent protein. This enabled them to trace which tissues originated from the stem cells. Extensive analysis revealed that the chimeric monkey exhibited a wide distribution of stem-cell-derived tissues across the brain, heart, kidney, liver, and gastrointestinal tract. Remarkably, the live monkey displayed stem cell contributions ranging from 21% to 92% across various tissues, averaging 67%.

The presence of stem-cell-derived cells in the reproductive tissues was a significant discovery. It underscors the potential for these cells to contribute to the germline and possibly influence future generations.

Implications and Future Directions

The success of this study is not merely academic. It has practical implications, offering the potential to create more precise monkey models for neurological and other biomedical research. By enhancing the understanding of primate cell developmental potential, the study paves the way for innovative approaches in medical science.

Looking ahead, the team aims to refine their method to increase the efficiency of generating chimeric monkeys. They plan to optimize the stem cell cultures and the blastocysts’ environments, hoping to improve the survival rates of these embryos in host animals.

In conclusion, the birth of the first chimeric monkey from embryonic stem cells is a remarkable scientific milestone. It broadens our knowledge of primate biology and holds promise for future applications that could benefit both primate conservation and human health.

 WTF fun facts

Source: “First live birth of a chimeric monkey using embryonic stem cell lines” — ScienceDaily

WTF Fun Fact 13610 – Creating Plant Biosensors

Scientists at the University of California – Riverside have engineered plant biosensors that change color in the presence of specific chemicals.

Someday, the greenery decorating our homes and gardens might soon be ornamental and an environmental watchdog. (Of course, plants are already good indicators of their surroundings since they tend to wilt or die when things get toxic.)

Innovative Plant Biosensors

It all started with a question: What if a simple house plant could alert you about contaminants in your water? Delving deep into this concept, the UC Riverside team made it a reality. In the presence of a banned, toxic pesticide known as azinphos-ethyl, the engineered plant astonishingly turns a shade of beet red. This development offers a visually compelling way to indicate the presence of harmful substances around us.

Ian Wheeldon, an associate professor of chemical and environmental engineering at UCR, emphasized the groundbreaking nature of this achievement. “In our approach, we ensured the plant’s natural metabolism remains unaffected,” he explained. “Unlike earlier attempts where the biosensor component would hinder the plant’s growth or water absorption during stress, our method doesn’t disrupt these essential processes.”

The team’s findings, elaborated in a paper published in Nature Chemical Biology, unveiled the secret behind this transformative process. At the heart of the operation lies a protein known as abscisic acid (ABA). Under stressful conditions like droughts, plants produce ABA, signaling them to conserve water and prevent wilting. The research team unlocked the potential of ABA receptors, training them to latch onto other chemicals besides ABA. When these receptors bind to specific contaminants, the plant undergoes a color change.

From Plant to Yeast: Expanding the Biosensor Spectrum

The UC Riverside team didn’t just stop at plants. They expanded their research horizon to include yeast, turning this organism into a chemical sensor. Remarkably, yeast exhibited the capability to respond to two distinct chemicals simultaneously, a feat yet to be achieved in plants.

Sean Cutler, UCR professor of plant cell biology, highlighted the team’s vision. “Imagine a plant that can detect up to 100 banned pesticides,” he said. “The potential applications, especially in environmental health and defense, are immense. However, there’s a long way to go before we can unlock such extensive sensing capabilities.”

The Path Forward for Plant Biosensors

While the initial results are promising, commercial growth of these engineered plants isn’t on the immediate horizon. Stringent regulatory approvals, which could span years, are a significant hurdle. Moreover, as a nascent technology, there are numerous challenges to overcome before it finds a place in real-world applications, like farming.

Yet, the future looks bright. “The potential extends beyond just pesticides,” Cutler added. “We aim to detect any environmental chemical, including common drugs that sometimes seep into our water supplies. The technology to sense these contaminants is now within reach.”

 WTF fun facts

Source:

WTF Fun Fact 13609 – Virtual Meetings and Mental State

In today’s digital age, the word “virtual meetings” frequently appears in our daily calendars. Yet, instead of feeling recharged after these virtual interactions, many of us experience an inexplicable sense of drowsiness.

New research from Aalto University reveals that the culprit behind this fatigue isn’t mental overload but rather mental underload and boredom.

Tackling Fatigue in Virtual Meetings: It’s Not Overload, It’s Underload!

Assistant Professor Niina Nurmi, who spearheaded the study, initially hypothesized that stress levels would surge during remote interactions. Surprisingly, the findings revealed quite the opposite. Nurmi noted, “especially those who were not engaged in their work quickly became drowsy during remote meetings.”

To uncover the heart of the matter, the research team meticulously tracked heart rate variability across virtual and in-person meetings. This analysis spanned nearly 400 meetings and involved 44 knowledge workers. Joining hands with the Finnish Institute of Occupational Health, experts at Aalto deployed heart rate monitors to delve deep into the realms of stress and recovery.

Nurmi and her team didn’t just stop at numbers. By integrating physiological methods with ethnographic research, they followed each subject for two workdays. This holistic approach ensured that they captured every event with precise timestamps, ultimately pinpointing the root causes of physiological responses.

The Role of Engagement in Virtual Fatigue

The insights gained from the research were indeed eye-opening. Nurmi stated, “The format of a meeting had little effect on people who were highly engaged and enthusiastic about their work.” These individuals managed to maintain their energy and active participation, even in a virtual setup. Contrastingly, those with lower work engagement and lesser enthusiasm found virtual meetings quite draining.

One major revelation from the study was the profound impact of cognitive cues and sensory input. Engaging in face-to-face interactions naturally keeps our focus sharp. However, virtual meetings often lack these vital stimuli. Nurmi elucidated, “Especially when cameras are off, the participant is left under-stimulated and may start to compensate by multitasking.”

The Pitfalls of Multitasking in Virtual Meetings

While a moderate level of stimulation benefits the brain, multitasking during virtual meetings emerges as a significant concern. The reason? Our brains aren’t wired to handle multiple cognitively demanding tasks at once. Activities like walking, which are automatic, can indeed enhance concentration during virtual meetings. However, attempting to juggle multiple tasks that require cognitive attention can be detrimental.

Nurmi elaborated on this conundrum, emphasizing that if you’re splitting your focus between two demanding tasks, you might miss out on essential discussions in the meeting. Additionally, the relentless need to toggle between tasks exhausts the brain.

Rethinking Virtual Interactions

The digital transformation of workplaces has made virtual meetings an integral part of our professional lives. While they offer numerous benefits, it’s essential to understand the underpinnings of virtual meeting fatigue. As this study from Aalto University highlights, engagement plays a pivotal role in our virtual experiences. By fostering a culture of active participation and minimizing distractions, we can optimize these interactions for better productivity and well-being.

 WTF fun facts

Source: “Virtual meetings tire people because we’re doing them wrong” — ScienceDaily

WTF Fun Fact 13608 – Harnessing Anger

In a surprising twist to conventional wisdom, a new study from the American Psychological Association reveals that anger, typically seen as a negative emotion, can significantly bolster our efforts in achieving challenging goals.

This intriguing finding shatters the myth that only positive emotions like happiness are conducive to success, painting getting mad in a rather motivational light.

The Power of Harnessing Anger in Goal Pursuit

The study, led by Heather Lench, PhD, a professor at Texas A&M University, delves into the functionalist theory of emotion. This theory posits that all emotions serve a purpose, guiding our responses to environmental cues. While sadness might signal a need for support, anger often indicates that it’s time to overcome an obstacle.

Researchers embarked on a journey through a series of experiments with over 1,000 participants. They induced various emotional states, from rage to amusement, and then set participants on tasks requiring them to achieve challenging goals. The tasks ranged from solving word puzzles to playing complex skiing video games. The results were eye-opening: those fueled by anger consistently outperformed those in a neutral state.

Real-World Implications

To ground their findings in real-world scenarios, the team turned their attention to the 2016 and 2020 U.S. presidential elections. They found that individuals who anticipated anger if their preferred candidate lost were more likely to cast their vote. This direct link between anger and proactive behavior further cements the notion that anger can indeed be a driving force for action.

The Dark Side of Harnessing Anger: A Cautionary Note

However, it’s not all rosy. The study also unearthed a darker aspect of the emotion: in certain situations, it led to unethical behavior, such as cheating to win. This serves as a reminder that while anger can be a potent motivator, it must be channeled appropriately to avoid negative outcomes.

The research spearheaded by Lench and her team adds a compelling layer to our understanding of emotions. It suggests that a blend of both positive and negative emotions is essential for well-being. Negative emotions, when wielded wisely, can be powerful tools in our quest for success.

In conclusion, this groundbreaking study not only challenges our perception of anger but also encourages us to embrace the full spectrum of our emotions. By doing so, we unlock a more nuanced approach to goal achievement, one where even anger can be an ally, propelling us forward in the face of challenges.

 WTF fun facts

Source: “Want to achieve your goals? Get angry” — ScienceDaily

WTF Fun Fact 13607 – Arizona Desert Fish

The discovery of Arizona desert fish is making researchers rethink the history of the world!

In a surprising revelation, researchers at the University of Minnesota uncovered an unexpected treasure trove of longevity within the freshwater fishes of the Arizona desert. Their study, recently published in Scientific Reports, highlights three species within the Ictiobus genus, also known as buffalofishes, with lifespans exceeding 100 years.

This groundbreaking discovery not only shifts our understanding of vertebrate aging but also positions these desert dwellers as potentially key players in aging studies across disciplines.

Longevity of Arizona Desert Fish Known as Buffalofishes

The central figures of this study are the bigmouth buffalo, smallmouth buffalo, and black buffalo. Native to Minnesota, these species often fall victim to misidentification, mistakenly grouped with invasive species like carp. Consequently, inadequate fishing regulations fail to protect these potential longevity lighthouses. The collaborative research effort, led by Alec Lackmann, Ph.D., from the University of Minnesota Duluth, delved into the lifespans of these species and unraveled their potential in aging research.

Dr. Lackmann’s approach to determining the age of the buffalofishes diverges from traditional scale examination. The team extracted otoliths, or earstones, from the cranium of the fishes. Like the rings on a tree, these otoliths develop a new layer annually. Through meticulous thin-sectioning and examination under a compound microscope, researchers could count these layers, unlocking the true age of the fish.

Remarkable Findings and Implications

The study’s results were nothing short of extraordinary:

  • Unprecedented longevity among freshwater fishes, with three species living over a century.
  • A population in Apache Lake, Arizona, primarily composed of individuals over 85 years old.
  • The likely survival of original buffalofishes from the 1918 Arizona stocking.
  • The development of a catch-and-release fishery, enhancing our understanding of fish longevity and identification.

Interestingly, these centenarian fishes were originally stocked into Roosevelt Lake, Arizona, in 1918. While their counterparts in Roosevelt Lake faced commercial fishing, the Apache Lake population thrived, undisturbed until recent angling activities.

Collaborative Efforts and Future Prospects

The study also highlights a robust collaboration between conservation anglers and scientists, with anglers contributing to scientific outreach and learning. When anglers observed unique markings on the buffalofishes, they reached out to Dr. Lackmann, initiating a partnership that would lead to this study’s pivotal findings.

Looking ahead, Dr. Lackmann envisions a bright future for studying these unique fish. Their exceptional longevity offers a window into their DNA, physiological processes, and disease resistance across a wide age range. The genus Ictiobus could become a cornerstone in gerontological research, with Apache Lake potentially emerging as a scientific hub for diverse research endeavors.

 WTF fun facts

Source: “Study uncovers hundred-year lifespans for three freshwater fish species in the Arizona desert” — ScienceDaily