WTF Fun Fact 13615 – Mars’ Green Glow

Scientists at the University of Liège have captured the first sight of Mars’ green glow.

Did you know Mars emits a glow in the visible range during the night? It was a phenomenon never before seen until now. The discovery by the University of Liège’s scientists offers new insights into the dynamics of the Red Planet’s upper atmosphere and its seasonal variations.

Mars’ Green Glow

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

A Bright Future for Martian Research

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

The Trace Gas Orbiter (TGO) satellite, a part of the European Space Agency’s Mars program, played a pivotal role in this discovery. Equipped with the UVIS-NOMAD instrument, the TGO was initially purposed for ultraviolet observations. However, scientists, including Jean-Claude Gérard from the University of Liège, redirected the instrument to capture images of Mars’ limb, leading to this unprecedented discovery.

The Glow of Martian Nights

During night observations, the researchers detected emissions between 40 and 70 km in altitude. These emissions result from oxygen atoms, created in the Martian summer atmosphere and carried to winter latitudes by winds. “As these atoms recombine with CO2, they emit a visible glow,” explains Lauriane Soret, an LPAP researcher. This glow is primarily concentrated in the Martian poles, where the convergence of oxygen atoms occurs most significantly.

The study, encompassing three years of Martian atmospheric data, has revealed that this visible glow fluctuates with the Martian seasons. With each half of the Martian year, lasting 687 Earth days, the glow switches from one hemisphere to the other. This rhythmic change offers scientists a new way to track atmospheric changes on Mars.

The implications of this research extend far beyond the academic realm. “The intensity of this night glow could guide future astronauts from orbit or on the Martian ground,” says Gérard. The potential for simple instruments to monitor atmospheric flows could significantly enhance future Martian missions and research.

Understanding Mars’ Green Glow and Atmosphere Dynamics

The observations made by the TGO satellite provide a unique opportunity to delve into the dynamics of the Martian upper atmosphere. By analyzing these glows, scientists like Benoit Hubert from LPAP suggest that remote sensing of these emissions can serve as an excellent tool for probing the composition and movements within Mars’ elusive atmospheric layer.

In summary, this first-time observation of Mars’ night glow in the visible spectrum opens up a new frontier in Martian exploration. It not only helps us understand the intricate atmospheric dynamics of our neighboring planet but also holds promise for supporting future explorations and potentially aiding human presence on Mars.

 WTF fun facts

Source: “Glow in the visible range detected for the first time in the Martian night” — ScienceaDaily

WTF Fun Fact 13614 – Chimp Warfare

University of Cambridge scientists have uncovered that chimpanzees, much like humans, use strategic high ground for reconnaissance on rival groups during “chimp warfare.” This discovery took place in the West African forests of Côte d’Ivoire. It showcases our closest evolutionary relatives employing a warfare tactic previously thought to be uniquely human.

Chimp Warfare from the Treetops

During a comprehensive three-year study, researchers monitored two neighboring groups of chimpanzees. Their movement patterns revealed a striking preference for elevated terrain when approaching the shared border zone where skirmishes could occur. Researchers noted that the chimpanzees were twice as likely to climb hills en route to this contested area compared to when they ventured within their territory. This suggests a calculated use of the landscape for strategic advantage.

At these vantage points, the primates demonstrated a notable change in behavior. Rather than engaging in their typical noisy foraging or eating, they opted for quiet rest. This behavior allowed them to listen for distant sounds of potential rivals. It also let them make informed decisions about advancing into enemy territory while minimizing the risk of direct conflict.

Strategic Warfare Among Non-Human Primates

The study’s lead author, Dr. Sylvain Lemoine, emphasized the significance of this behavior. “The strategic use of landscape for territorial control reflects a cognitive complexity in chimpanzees that mirrors human war-like strategies,” he explained. This finding suggests that such tactical behavior may have been a part of our evolutionary history. It’s traceable back to the proto-warfare of prehistoric hunter-gatherer societies.

Over the course of their research, the team amassed more than 21,000 hours of tracking data from 58 chimpanzees. The study’s significance lies in its contribution to understanding chimpanzee behavior and implications for evolutionary biology and anthropology.

The study conducted at the Taï Chimpanzee Project indicates that chimpanzees conduct ‘border patrols’ to establish and protect their territory. These patrols are carried out with precision and coordination, reminiscent of a silent hunt. Inselbergs, or isolated rocky outcrops, frequently served as the chosen points for these reconnaissance activities.

The researchers’ observations included instances where these patrols led to expansions of territory or, in rare cases, violent confrontations. Despite these risks, the primary use of hilltop reconnaissance appears to be the avoidance of direct conflict. Chimpanzees preferring to gather information from a distance and reduce the likelihood of violent encounters.

Insights Into Primate Behavior

The discovery that chimpanzees use tactical reconnaissance is a testament to their intelligence and adaptability. More territory means better access to food and higher chances of successful mating, which, as previous research by Lemoine suggests, leads to larger communities with higher birth rates and reduced rival pressure.

This study provides a fascinating glimpse into the complex social behaviors of chimpanzees, offering evidence that tactical thinking and strategic planning are not solely human traits.

 WTF fun facts

Source: “Chimpanzees use hilltops to conduct reconnaissance on rival groups, study finds” — ScienceDaily

WTF Fun Fact 13613 – First Chimeric Monkey

Researchers have made a monumental stride in primate research by making the first chimeric monkey.

This marks the first successful birth of a chimeric monkey from embryonic stem cell lines. This scientific achievement has profound implications for the fields of genetic engineering, species conservation, and biomedical studies.

Understanding Chimerism in Primates

The study, led by senior author Zhen Liu of the Chinese Academy of Sciences, culminated in the birth of a monkey with cells originating from two distinct embryos. Until now, this feat of chimerism had been achieved only in smaller mammals such as rats and mice. Published in the prestigious journal Cell, the research opens new avenues for understanding pluripotency. That’s the capability of stem cells to differentiate into any cell type—in non-human primates and possibly humans.

The cynomolgus monkeys, commonly used in biomedical research, served as the subjects for this groundbreaking experiment. The researchers established nine stem cell lines from blastocyst embryos and selected a subset of these pluripotent cells to inject into early-stage monkey embryos. This meticulous process led to several pregnancies and the birth of six live monkeys. One of these showcased a substantial level of chimerism.

The Making of a Chimeric Monkey

The researchers tagged the stem cells with green fluorescent protein. This enabled them to trace which tissues originated from the stem cells. Extensive analysis revealed that the chimeric monkey exhibited a wide distribution of stem-cell-derived tissues across the brain, heart, kidney, liver, and gastrointestinal tract. Remarkably, the live monkey displayed stem cell contributions ranging from 21% to 92% across various tissues, averaging 67%.

The presence of stem-cell-derived cells in the reproductive tissues was a significant discovery. It underscors the potential for these cells to contribute to the germline and possibly influence future generations.

Implications and Future Directions

The success of this study is not merely academic. It has practical implications, offering the potential to create more precise monkey models for neurological and other biomedical research. By enhancing the understanding of primate cell developmental potential, the study paves the way for innovative approaches in medical science.

Looking ahead, the team aims to refine their method to increase the efficiency of generating chimeric monkeys. They plan to optimize the stem cell cultures and the blastocysts’ environments, hoping to improve the survival rates of these embryos in host animals.

In conclusion, the birth of the first chimeric monkey from embryonic stem cells is a remarkable scientific milestone. It broadens our knowledge of primate biology and holds promise for future applications that could benefit both primate conservation and human health.

 WTF fun facts

Source: “First live birth of a chimeric monkey using embryonic stem cell lines” — ScienceDaily

WTF Fun Fact 13610 – Creating Plant Biosensors

Scientists at the University of California – Riverside have engineered plant biosensors that change color in the presence of specific chemicals.

Someday, the greenery decorating our homes and gardens might soon be ornamental and an environmental watchdog. (Of course, plants are already good indicators of their surroundings since they tend to wilt or die when things get toxic.)

Innovative Plant Biosensors

It all started with a question: What if a simple house plant could alert you about contaminants in your water? Delving deep into this concept, the UC Riverside team made it a reality. In the presence of a banned, toxic pesticide known as azinphos-ethyl, the engineered plant astonishingly turns a shade of beet red. This development offers a visually compelling way to indicate the presence of harmful substances around us.

Ian Wheeldon, an associate professor of chemical and environmental engineering at UCR, emphasized the groundbreaking nature of this achievement. “In our approach, we ensured the plant’s natural metabolism remains unaffected,” he explained. “Unlike earlier attempts where the biosensor component would hinder the plant’s growth or water absorption during stress, our method doesn’t disrupt these essential processes.”

The team’s findings, elaborated in a paper published in Nature Chemical Biology, unveiled the secret behind this transformative process. At the heart of the operation lies a protein known as abscisic acid (ABA). Under stressful conditions like droughts, plants produce ABA, signaling them to conserve water and prevent wilting. The research team unlocked the potential of ABA receptors, training them to latch onto other chemicals besides ABA. When these receptors bind to specific contaminants, the plant undergoes a color change.

From Plant to Yeast: Expanding the Biosensor Spectrum

The UC Riverside team didn’t just stop at plants. They expanded their research horizon to include yeast, turning this organism into a chemical sensor. Remarkably, yeast exhibited the capability to respond to two distinct chemicals simultaneously, a feat yet to be achieved in plants.

Sean Cutler, UCR professor of plant cell biology, highlighted the team’s vision. “Imagine a plant that can detect up to 100 banned pesticides,” he said. “The potential applications, especially in environmental health and defense, are immense. However, there’s a long way to go before we can unlock such extensive sensing capabilities.”

The Path Forward for Plant Biosensors

While the initial results are promising, commercial growth of these engineered plants isn’t on the immediate horizon. Stringent regulatory approvals, which could span years, are a significant hurdle. Moreover, as a nascent technology, there are numerous challenges to overcome before it finds a place in real-world applications, like farming.

Yet, the future looks bright. “The potential extends beyond just pesticides,” Cutler added. “We aim to detect any environmental chemical, including common drugs that sometimes seep into our water supplies. The technology to sense these contaminants is now within reach.”

 WTF fun facts

Source:

WTF Fun Fact 13607 – Arizona Desert Fish

The discovery of Arizona desert fish is making researchers rethink the history of the world!

In a surprising revelation, researchers at the University of Minnesota uncovered an unexpected treasure trove of longevity within the freshwater fishes of the Arizona desert. Their study, recently published in Scientific Reports, highlights three species within the Ictiobus genus, also known as buffalofishes, with lifespans exceeding 100 years.

This groundbreaking discovery not only shifts our understanding of vertebrate aging but also positions these desert dwellers as potentially key players in aging studies across disciplines.

Longevity of Arizona Desert Fish Known as Buffalofishes

The central figures of this study are the bigmouth buffalo, smallmouth buffalo, and black buffalo. Native to Minnesota, these species often fall victim to misidentification, mistakenly grouped with invasive species like carp. Consequently, inadequate fishing regulations fail to protect these potential longevity lighthouses. The collaborative research effort, led by Alec Lackmann, Ph.D., from the University of Minnesota Duluth, delved into the lifespans of these species and unraveled their potential in aging research.

Dr. Lackmann’s approach to determining the age of the buffalofishes diverges from traditional scale examination. The team extracted otoliths, or earstones, from the cranium of the fishes. Like the rings on a tree, these otoliths develop a new layer annually. Through meticulous thin-sectioning and examination under a compound microscope, researchers could count these layers, unlocking the true age of the fish.

Remarkable Findings and Implications

The study’s results were nothing short of extraordinary:

  • Unprecedented longevity among freshwater fishes, with three species living over a century.
  • A population in Apache Lake, Arizona, primarily composed of individuals over 85 years old.
  • The likely survival of original buffalofishes from the 1918 Arizona stocking.
  • The development of a catch-and-release fishery, enhancing our understanding of fish longevity and identification.

Interestingly, these centenarian fishes were originally stocked into Roosevelt Lake, Arizona, in 1918. While their counterparts in Roosevelt Lake faced commercial fishing, the Apache Lake population thrived, undisturbed until recent angling activities.

Collaborative Efforts and Future Prospects

The study also highlights a robust collaboration between conservation anglers and scientists, with anglers contributing to scientific outreach and learning. When anglers observed unique markings on the buffalofishes, they reached out to Dr. Lackmann, initiating a partnership that would lead to this study’s pivotal findings.

Looking ahead, Dr. Lackmann envisions a bright future for studying these unique fish. Their exceptional longevity offers a window into their DNA, physiological processes, and disease resistance across a wide age range. The genus Ictiobus could become a cornerstone in gerontological research, with Apache Lake potentially emerging as a scientific hub for diverse research endeavors.

 WTF fun facts

Source: “Study uncovers hundred-year lifespans for three freshwater fish species in the Arizona desert” — ScienceDaily

WTF Fun Fact 13598 – The Science of Champagne Bubbles

Champagne toasts at celebrations are iconic, but have you ever wondered about the perfect straight-line rise of its bubbles? Scientists at Brown University and the University of Toulouse have uncorked the answer, revealing the science behind the behavior of bubbles in our favorite carbonated drinks.

Carbonation’s Mysteries Unveiled

In the world of carbonated drinks, from soda to beer, the bubbles’ behavior varies. But Champagne and sparkling wine stand out. They feature a continuous rise of gas bubbles, rushing to the surface in a single-file line. This phenomenon, called a stable bubble chain, contrasts with beverages like beer, where bubbles often take a more chaotic route upwards.

Researchers were intrigued: What caused Champagne’s bubbles to ascend in such an orderly fashion?

Surfactants: The Science of Champagne Bubbles

Delving deeper, the study unveiled that the straight rise of bubbles in Champagne and sparkling wine is due to the presence of soap-like compounds called surfactants. Surfactants reduce tension between the liquid and gas bubbles, facilitating a seamless and straight rise to the top.

Roberto Zenit, a senior author on the study, explains, “These protein molecules that impart flavor and uniqueness to the Champagne are also responsible for the stability of the bubbles they produce.”

Apart from surfactants, the bubble size too determines its stability. Larger bubbles in drinks cause a smoother ascent, forming stable chains similar to those with surfactants. This revelation establishes surfactants and bubble size as the key determinants in the formation of stable bubble chains in carbonated beverages.

This bubbly research isn’t just for beverage enthusiasts. Understanding the science of bubbles, especially stable bubble chains, has broader applications in fluid mechanics, a field that studies the behavior of fluids.

For instance, technologies employing bubble-induced mixing, like water treatment facilities, could benefit from this newfound knowledge. Furthermore, the study might pave the way for a better comprehension of natural phenomena, such as ocean seeps where methane and carbon dioxide are released from the ocean bed.

Experiments Worth Raising a Glass To

Researchers brought an array of beverages to the table, including Pellegrino sparkling water, Tecate beer, Charles de Cazanove champagne, and a Spanish-style brut. They utilized a plexiglass container with a needle at its base, enabling them to pump gas and create diverse bubble chains.

By systematically adjusting surfactants and bubble size, they found that both these factors independently contributed to transforming unstable bubble chains into stable ones. Additionally, numerical simulations on computers were conducted to delve into intricate details like surfactant quantity in gas bubbles and precise bubble velocities.

Champagne Bubbles in the Future of Fluid Mechanics

While enjoying that next glass of bubbly, one can marvel at the fluid mechanics at play. Researchers are keen on diving deeper into the behavior of bubbles, especially in their application to fluid mechanics. As Zenit summarizes, they aim to explore the movement of bubbles and their significance in both industrial applications and natural scenarios.

 WTF fun facts

Source: “Why do Champagne bubbles rise the way they do? Scientists’ new discovery is worthy of a toast” — ScienceDaily

WTF Fun Fact 13597 – Unique Perception of Soccer Goalkeepers

In the dynamic world of soccer, goalkeepers have always been seen as outliers. While they defend their posts, these players face the arduous task of making quick decisions under pressure, often with fragmented information. New research sheds light on the exceptional way goalkeepers perceive their surroundings, revealing significant differences in their multisensory processing capabilities.

Enhanced Multi-Sensory Processing of Soccer Goalkeepers

Michael Quinn from Dublin City University, himself a former professional goalkeeper, embarked on this study to validate a longstanding soccer belief. He, alongside his team, found that, unlike other players, goalkeepers have an intrinsic knack for making swift decisions. This is the case even when faced with limited sensory data. It’s not just a feeling within the soccer community; now, there’s scientific evidence supporting the notion that goalkeepers genuinely “see” the world differently.

In an innovative approach, Quinn and his team examined temporal binding windows among professional goalkeepers, outfield soccer players, and those who don’t play soccer. This window represents the time frame within which individuals combine sensory data from various sources.

A Deep Dive into the Goalkeeper’s Brain

The study had participants discern visual and auditory stimuli that appeared in different sequences and intervals. Interestingly, goalkeepers exhibited a more refined ability to discern these multisensory cues, indicating their superior estimation of timing. This precision stands in stark contrast to outfield players and non-players.

Furthermore, goalkeepers demonstrated less interplay between visual and auditory cues. This suggests they tend to separate sensory information rather than blending them. This unique ability stems from their need to process various cues simultaneously. The trajectory of a ball, combined with the sound it makes when kicked, are essential inputs for a goalkeeper’s split-second decision-making.

Origins and Future Explorations into the Perceptions of Soccer Goalkeepers

While the current findings illuminate the distinct perceptual world of soccer goalkeepers, the cause of these differences remains a mystery. Does intense, specialized training from an early age shape their multisensory processing? Or are inherent abilities leading young players to gravitate toward the goalkeeper position?

David McGovern, the study’s lead investigator, expressed curiosity about other specialized soccer positions. Could strikers or center-backs also exhibit unique perceptual tendencies? The team at Dublin City University aims to unravel these questions in subsequent studies. They will explore the development and influences on a goalkeeper’s extraordinary sensory processing capabilities.

 WTF fun facts

Source:

WTF Fun Fact 13594 – Benefits of the Snooze Button

There are more benefits of the snooze button than just getting an extra few minutes of sleep.

For many, the snooze button been branded as the ultimate “sleep disruptor.” But new findings from Stockholm University’s Department of Psychology may be about to turn this common belief on its head.

Snoozing: A Maligned Habit?

It’s a widely held belief that tapping that tempting snooze button might be doing us more harm than good. Critics claim it disrupts our sleep patterns, making us groggier and less alert when we eventually rise. But, is there any scientific basis to this belief?

The recent study led by Tina Sundelin of Stockholm University is turning this narrative around. Contrary to popular belief, hitting the snooze button might actually support the waking process for those who regularly find solace in those few extra minutes.

A Deep Dive into the Benefits of the Snooze Button

This comprehensive research involved two phases. The initial study surveyed 1,732 individuals on their morning habits. Findings highlighted that a significant number, especially among young adults and night owls, lean heavily on the snooze function. Their main reason? Feeling overwhelmingly fatigued when the first alarm rings.

The second phase delved deeper. Thirty-one habitual snoozers spent two nights in a sleep lab. On one morning, they had the luxury to snooze for an additional 30 minutes, while the other morning demanded an immediate wake-up call. Results revealed that most participants actually enjoyed more than 20 minutes of additional sleep during the snooze time. This had little impact on the overall quality or duration of their night’s rest.

What Does the Snooze Button Really Do?

Here’s the kicker: not only did the snooze function not disrupt the participants’ sleep, it also ensured no one was jolted awake from deep slumber. Moreover, those who indulged in that extra rest displayed slightly sharper cognitive abilities upon waking. Factors such as mood, overall sleepiness, or cortisol levels in the saliva remained unaffected.

Sundelin points out, “Our findings reveal that a half-hour snooze does not negatively impact night sleep or induce sleep inertia, which is that groggy feeling post-wakeup. In some instances, the results were even favorable. For example, we noticed a reduced chance of participants waking from deep sleep stages.”

While these findings might be a relief for serial snoozers, Sundelin adds a word of caution: “The study primarily focused on individuals who habitually hit the snooze button and can effortlessly drift back to sleep post-alarm. Snoozing might not be a one-size-fits-all solution.”

For those who relish those additional moments of rest in the morning, this research brings good news. Snoozing, at least for regular snoozers, doesn’t seem to steal away the quality of our sleep. On the contrary, it may subtly boost our cognitive processes during the waking stage.

So, the next time your alarm sounds and you’re contemplating another round with the snooze button, remember: You might not be losing out at all by grabbing those few extra minutes of shut-eye.

 WTF fun facts

Source: “You don’t lose if you snooze” — ScienceDaily

WTF Fun Fact 13591 – The Grandmother Hypothesis

Have you heard of the grandmother hypothesis? Basically, it means grandma was right about washing behind your ears!

When it comes to maintaining skin health, certain regions, like behind the ears and between the toes, often get overlooked. Research by the George Washington University reveals why paying attention to these areas is essential. The skin microbiome, which refers to the collection of microbes residing on our skin, has shown variation in composition across different skin regions, be it dry, moist, or oily.

Exploring the Grandmother Hypothesis

The GW Computational Biology Institute set out to explore the widely accepted but scientifically unproven “Grandmother Hypothesis.” Keith Crandall, Director of the Computational Biology Institute, recalls the age-old advice from grandmothers: always scrub behind the ears, between the toes, and inside the belly button. But why? The belief is that these less frequently washed areas might house different bacterial compositions compared to more regularly scrubbed parts of the body.

To put this to the test, Marcos Pérez-Losada and Keith Crandall designed a unique genomics course, involving 129 graduate and undergraduate students. These students collected data by swabbing areas like behind their ears, between their toes, and their navels. For comparison, samples were also taken from drier regions such as calves and forearms.

Revealing Differences in Microbial Diversity

The results were enlightening. Forearms and calves, often cleaned more diligently during baths, displayed a broader and presumably healthier range of microbes. This is compared to hotspots like behind the ears and between the toes. A balanced skin microbiome is essential for skin health. A dominance of harmful microbes can disrupt this balance, potentially leading to skin conditions such as eczema or acne.

The study’s outcomes suggest that cleaning habits indeed impact the microbial population on the skin, further influencing its health. Thus, the age-old advice from our grandparents holds some truth after all!

Implications of the Grandmother Hypothesis

The research carried out by the GW Computational Biology Institute provides significant insights into the skin microbiome of healthy adults. It serves as a benchmark for future studies. There is still a long way to go in understanding the intricacies of how the microbial community on our skin impacts our overall health or disease state.

The study titled “Spatial diversity of the skin bacteriome” marked an essential milestone in the field. It sheds light on the diverse bacterial communities residing in different parts of our skin. Published in the renowned journal Frontiers in Microbiology on September 19, it is a stepping stone to further research in this rapidly evolving domain.

In conclusion, paying heed to the lesser-focused regions of our skin, as our ancestors advised, might be the key to ensuring a balanced and healthy skin microbiome. So next time you shower, remember to scrub those often-neglected areas!

 WTF fun facts

Source: “Skin behind the ears and between the toes can host a collection of unhealthy microbes” — ScienceDaily